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1 Introduction

In this note, we prove the following theorem in homotopy type theory [4].

Theorem (Theorem 3.1). A lex, accessible modality is an open modality if and
only if its reflector preserves dependent function types.

This is analogous to the classical characterization of open subtoposes in topos
theory [1, A4.5.1]: a subtopos of a topos is an open subtopos if and only if its
reflector preserves exponentials.

Our proof is, though, not identical to the topos-theoretic one for two rea-
sons. First, there is no universe of all propositions in homotopy type theory
unless propositional resizing [4, Section 3.5] is assumed, so we cannot mimic
topos-theoretic arguments using the subobject classifier. Second, even when
propositional resizing is assumed, not all modalities are induced by local op-
erators. A typical example is the hypercompletion modality [3, Theorem 3.21]
valid in some ∞-toposes of sheaves [2, Section 6.5.4].

Our proof idea comes from the adjoint functor theorem for presentable
(∞-)categories. The reflector of a lex, accessible modality is considered as a
lex, accessible endofunctor on the ∞-category of types. Our main theorem es-
sentially asserts that such a reflector is representable if and only if it preserves
products. This should follow from some form of adjoint functor theorem in ho-
motopy type theory. At the moment of writing, no adjoint functor theorem is
available in homotopy type theory because even ∞-category theory in homo-
topy type theory has not yet been developed. However, the proof of the classical
adjoint functor theorem tells us how to construct the representing object, and
this is enough for our special case.

2 Modalities in homotopy type theory

We review the theory of modalities in homotopy type theory [3].

Definition 2.1. A modality m (on a universe U) is a family of propositions
Inm : U → PropU satisfying the following axioms:
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1. Inm is reflective, that is, there exist a function □m : U → U and a family
of functions ηm :

∏
A:U A → □m(A) satisfying that Inm(□m(A)) for all

A : U and that, for any types A,B : U such that Inm(B), the function
λf.f ◦ ηm(A) : (□m(A) → B) → (A → B) is an equivalence;

2. Inm is closed under dependent pair types, that is, for any A : U and
B : A → U , if Inm(A) and

∏
a:A Inm(B(a)), then Inm(

∑
a:A B(a)).

We call □m the reflector of m.

Remark 2.2. □m and ηm are uniquely determined by Inm.

Remark 2.3. The reflector gives the following m-recursion principle: for any
types A,B : U such that Inm(B) and a function f : A → B, there exists a
unique function recm(f) : □m(A) → B equipped with an identification recm(f)◦
ηm(A) = f .

Definition 2.4. Let m be a modality. A type A : U is m-connected if □m(A) is
contractible.

Proposition 2.5 ([3, Corollary 1.37]). Let m be a modality. A type A : U
is m-connected if and only if, for any B : U such that Inm(B), the function
λb.λ .b : B → (A → B) is an equivalence.

Definition 2.6. A modality is left exact or lex for short if, for any A : U , if A
is m-connected, then so is a = b for any a, b : A.

Definition 2.7. By a family we mean a pair (Iα, Zα) consisting of Iα : U and
Zα : Iα → U .

Definition 2.8. Let m be a modality. A presentation of m is a family α such
that a type A : U satisfies Inm(A) if and only if the function λa.λ .a : A →
(Zα(i) → A) is an equivalence for all i : Iα.

Remark 2.9. If α is a presentation of m, then Zα(i) is m-connected for any i : Iα
by Proposition 2.5.

Definition 2.10. A modality is accessible if it admits a presentation.

Example 2.11. Let P : PropU . We define the open modality oP by

InoP
(A) ≡ IsEquiv(λ(a : A).λ( : P ).a).

The reflector is defined by □oP
(A) ≡ (P → A) with unit ηoP

(A, a) ≡ λ .a. The
modality oP is accessible since Iα ≡ Unit and Zα( ) ≡ P define a presentation of
oP . One can see that a type A : U is oP -connected if and only if P → IsContr(A),
from which it follows that oP is lex.

In Proposition 2.14 below, we give an explicit account of part of [3, Remark
3.23].
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Definition 2.12. We say a family α is closed under identity types if it is
equipped with a function∏

i:Iα

∏
x,y:Zα(i)

∑
j:Iα

Zα(j) ≃ (x = y).

Construction 2.13. Let α be a family. We define another family δ(α) by

Iδ(α) ≡ Iα + (
∑

i:Iα
Zα(i)× Zα(i))

Zδ(α)(inl(i)) ≡ Zα(i)

Zδ(α)(inr(i, x, y)) ≡ (x = y).

This gives an endofunction δ on the type of families. We then define a family
δ∗(α) by

Iδ∗(α) ≡
∑

n:Nat Iδn(α)

Zδ∗(α)(n, i) ≡ Zδn(α)(i).

By construction, δ∗(α) is closed under identity types: given (n, i) : Iδ∗(α) and
x, y : Zδ∗(α)(n, i), we have (n+1, inr(i, x, y)) : Iδ∗(α) and the identity equivalence
Zδ∗(α)(n+ 1, inr(i, x, y)) ≃ (x = y).

Proposition 2.14. Any lex, accessible modality m admits a presentation closed
under identity types.

Proof. Let α be a presentation of m. Then δ(α) is also a presentation of m. To
see this, let A : U be a type. Since δ(α) includes α, if the function A → (Zδ(α) →
A) is an equivalence for all i : Iδ(α), then Inm(A). Conversely, if Inm(A), then
the function A → ((x = y) → A) is an equivalence for all inr(i, x, y) : Iδ(α) by
Proposition 2.5 since x = y is m-connected as m is lex. Therefore, δn(α)’s are
all presentations of m, and then δ∗(α) is a presentation of m as well and closed
under identity types.

3 Main theorem

Theorem 3.1. A lex, accessible modality is an open modality if and only if its
reflector preserves dependent function types.

We clarify what preservation of dependent function types means.

Proposition 3.2 ([3, Lemma 1.26]). Let m be a modality. For A : U and
B : A → U , if

∏
a:A Inm(B(a)), then Inm(

∏
a:A B(a)).

Definition 3.3. Let m be a modality. For A : U and B : A → U , we have a
canonical function

cΠm : □m(
∏

a:A B(a)) →
∏

a:A □m(B(a))

with an identifiction cΠm(ηm( , f)) = λa.ηm( , f(a)) for f :
∏

a:A B(a). This is
defined by m-recursion since Inm(

∏
a:A □m(B(a))) by Proposition 3.2. We say

□m preserves dependent function types if the function cΠm is an equivalence for
all A and B.
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The following is immediate from the definition.

Lemma 3.4. Let m be a modality whose reflector preserves dependent function
types. For A : U and B : A → U , if B(a) is m-connected for all a : A, then so
is

∏
a:A B(a).

Our main theorem will follow from the following technical lemma.

Lemma 3.5. Let α be a family closed under identity types. Then

(
∏

i:Iα
Zα(i)) →

∏
i:Iα

IsContr(Zα(i)).

Proof. Suppose f :
∏

i:Iα
Zα(i) and let i : Iα. Then Zα(i) is inhabited by f(i).

For any x : Zα(i), we have some j : Iα and e : Zα(j) ≃ (f(i) = x) since α is
closed under identity types. Then e(f(j)) : f(i) = x.

Corollary 3.6. Let α be a family closed under identity types. Then the type∏
i:Iα

Zα(i)

is a proposition.

Proof. Lemma 3.5 implies (
∏

i:Iα
Zα(i)) → IsContr(

∏
i:Iα

Zα(i)).

Construction 3.7. Let m be a lex, accessible modality. Take a presentation α
of m closed under identity types by Proposition 2.14. We define

Φm ≡
∏

i:Iα
Zα(i)

which is a proposition by Corollary 3.6.

oΦm
is the best approximation of m by an open modality:

Proposition 3.8. Let m be a lex, accessible modality. The proposition Φm in
Construction 3.7 is the largest proposition in U such that InoΦm

(A) → Inm(A)
for all A : U . Consequently, Φm does not depend on the choice of presentation
of m.

Proof. Consider the following commutative diagram for i : Iα and A : U .

A (Zα(i) → A)

(Φm → A) (Zα(i) → Φm → A)≃

The bottom function is an equivalence by Lemma 3.5. The vertical functions
are equivalences when InoΦm

(A). Then, by 2-out-of-3, InoΦm
(A) implies Inm(A).

Let P : PropU be a proposition such that InoP
(A) → Inm(A) for all A : U .

By Proposition 2.5, any m-connected type is oP -connected. In particular, Zα(i)
is oP -connected for any i, that is P → IsContr(Zα(i)), from which we have
P →

∏
i:Iα

Zα(i).
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Proof of Theorem 3.1. The “only if” part can directly be verified. For the “if”
part, let m be a lex, accessible modality whose reflector preserves dependent
function types. We show that Inm(A) if and only if InoΦm

(A), for any A : U . We
have seen in Proposition 3.8 that InoΦm

(A) implies Inm(A). By Lemma 3.4, Φm

is m-connected, and then Inm(A) implies InoΦm
(A) by Proposition 2.5.

Remark 3.9. What is happening in the proof of Theorem 3.1 is a special case
of Freyd’s adjoint functor theorem. The reflector □m : U → U is thought of as
a lex, accessible functor, and Theorem 3.1 says that it is representable by some
type Φm : U (which is automatically a proposition since □m is an idempotent
monad) if and only if it preserves products. The type family Zα : Iα → U is
thought of as a “solution set”, and Φm is constructed as the “limit” of Zα. Note
that the product Φm ≡

∏
i:Iα

Zα(i) is the limit of any considerable extension
of Zα to a functor, because α is closed under identity types. Indeed, for any
i, j : Iα and any function f : Zα(i) → Zα(j), the diagram

Φm

Zα(i) Zα(j)f

commutes by Lemma 3.5.

Remark 3.10. Assume propositional resizing so we have the universe Prop of all
propositions. Suppose that m is a topological modality. By [3, Theorem 3.37],
m is induced by a local operator j, and we can choose a canonical persentation
α of m defined by Iα ≡ {P : Prop | P is j-dense} and Zα(P ) ≡ P. Then
the construction of the proposition Φm coincides with the construction of the
subterminal object in the proof of [1, A4.5.1].
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