Homotopy type theory as internal languages of diagrams of ∞ -logoses

Taichi Uemura

July 4, 2023 FSCD 2023

Homotopy type theory (HoTT)

SyntaxSemanticsHoTTan ∞-logos (a.k.a. ∞-topos)?a diagram of ∞-logoses

- ► Introduce a notion of a *mode sketch*.
- ► A diagram of ∞-logoses indexed over a mode sketch is reconstructed via *modalities* in its *oplax limit*.

Syntax	Semantics
HoTT	an ∞ -logos
HoTT+modalities	a diagram of ∞ -logoses in-
	dexed over a mode sketch

- By modalities we mean modalities *internal* to HoTT (i.e. the type of modalities is defined in HoTT).
- We postulate some modalities as constants rather than rules.
- Can be formalized in any HoTT library.
- Easy to use also informally.

HoTT+modalities is also a language for *higher dimensional logical relations* analogous to *synthetic Tait computability (STC)* (Sterling and Harper 2021). Normalization for ∞ -type theories (Uemura 2022) is an approach to general coherence theorems in the ∞ -categorical semantics of type theories.

- Use the STC-viewpoint to construct a normalization model to get a normalization map.
- Use the internal-diagram-viewpoint to analyze the normalization map.

Studied by Rijke, Shulman, and Spitters (2020).

Definition

A lex, accessible modality (LAM) (on U) \mathfrak{m} consists of a $\mathsf{In}_\mathfrak{m}:\mathfrak{U}\to\mathsf{Prop}$ such that:

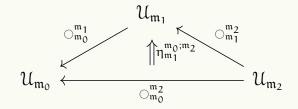
- $\mathcal{U}_{\mathfrak{m}} \equiv \{A : \mathcal{U} \mid \mathsf{In}_{\mathfrak{m}}(A)\} \hookrightarrow \mathcal{U}$ has a left adjoint $\bigcirc_{\mathfrak{m}} : \mathcal{U} \to \mathcal{U}_{\mathfrak{m}}$ with unit $\eta_{\mathfrak{m}} : \prod_{A:\mathcal{U}} A \to \bigcirc_{\mathfrak{m}} A;$
- some other axioms.

Diagrams induced by LAMs

Given two LAMs \mathfrak{m}_0 and \mathfrak{m}_1 , we have a functor

$$\bigcirc_{\mathfrak{m}_0}^{\mathfrak{m}_1} \colon \ \mathfrak{U}_{\mathfrak{m}_1} \longleftrightarrow \mathfrak{U} \xrightarrow{\bigcirc_{\mathfrak{m}_0}} \mathfrak{U}_{\mathfrak{m}_0}.$$

Given three LAMs \mathfrak{m}_0 , \mathfrak{m}_1 , and \mathfrak{m}_2 , we have a natural transformation $\eta_{\mathfrak{m}_1}^{\mathfrak{m}_0;\mathfrak{m}_2} \equiv \bigcirc_{\mathfrak{m}_2}^{\mathfrak{m}_1} \eta_{\mathfrak{m}_1}|_{\mathcal{U}_{\mathfrak{m}_2}}$.



Diagrams induced by LAMs

Idea

Postulate some LAMs $\mathfrak{m}(\mathfrak{i})$ and use $\bigcirc_{\mathfrak{m}(\mathfrak{i})}^{\mathfrak{m}(j)}$'s and $\eta_{\mathfrak{m}(\mathfrak{i})}^{\mathfrak{m}(\mathfrak{i})\mathfrak{m}(k)}$'s to draw internal diagrams of ∞ -logoses.

Trimming

Definition

We write $\mathfrak{m}_0 \leq {}^{\perp}\mathfrak{m}_1$ if $\bigcirc_{\mathfrak{m}_1} A \simeq 1$ whenever $In_{\mathfrak{m}_0}(A)$.

When $\mathfrak{m}_0 \leq {}^{\perp}\mathfrak{m}_1$, the functor $\bigcirc_{\mathfrak{m}_1}^{\mathfrak{m}_0} : \mathfrak{U}_{\mathfrak{m}_0} \to \mathfrak{U}_{\mathfrak{m}_1}$ is constant at 1, so only one direction $\bigcirc_{\mathfrak{m}_0}^{\mathfrak{m}_1} : \mathfrak{U}_{\mathfrak{m}_1} \to \mathfrak{U}_{\mathfrak{m}_0}$ is meaningful.

Idea

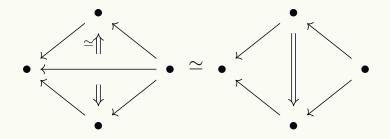
Postulate some $\mathfrak{m}(\mathfrak{i}) \leq {}^{\perp}\mathfrak{m}(\mathfrak{j})$ to cut edges off the diagram.

Commutativity

Idea

Postulate that some $\eta_{\mathfrak{m}(j)}^{\mathfrak{m}(i);\mathfrak{m}(k)}$'s are invertible to make commutative triangles.

Shapes other than triangle, e.g.



Definition

A mode sketch \mathfrak{M} consist of:

- ▶ a decidable finite poset I_m;
- a subset T_m of triangles in I_m called *thin* triangles.

Let \mathfrak{M} be a mode sketch and let $\mathfrak{m} : \mathfrak{M} \to \mathsf{LAM}$. Axiom A $\mathfrak{m}(\mathfrak{i}) \leq {}^{\perp}\mathfrak{m}(\mathfrak{j})$ for any $\mathfrak{j} \not\leq \mathfrak{i}$ in \mathfrak{M} . Axiom B $\eta_{\mathfrak{m}(\mathfrak{j})}^{\mathfrak{m}(\mathfrak{i});\mathfrak{m}(k)}$ is invertible for any thin triangle $(\mathfrak{i} < \mathfrak{j} < k)$.

Sometimes we also consider:

Axiom C The join of all $\mathfrak{m}(\mathfrak{i})$'s is the top modality.

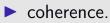
Definition

A model of \mathfrak{M} is an ∞ -logos \mathcal{L} equipped with an interpretation of a constant $\mathfrak{m} : \mathfrak{M} \to \mathsf{LAM}$ satisfying Axioms A–C.

∞ -logoses indexed over a mode sketch

Definition

- A $\mathfrak{M}\text{-indexed} \infty\text{-logos}\ \mathcal{K}$ consists of:
 - ▶ an ∞-logos $\mathcal{K}(i)$ for eveyr $i \in \mathfrak{M}$;
 - ▶ a lex, accessible functor $\mathcal{K}(i < j) : \mathcal{K}(j) \to \mathcal{K}(i)$ for every (i < j) in \mathfrak{M} ;
 - ▶ a natural transformation $\mathcal{K}(i < k) \Rightarrow \mathcal{K}(i < j) \circ \mathcal{K}(j < k)$ for every triangle (i < j < k) in \mathfrak{M} that is invertible when (i < j < k) is thin;



Semantics of mode sketch

Theorem

For any mode sketch \mathfrak{M} , we have an equivalence between:

- 1. the space of models of \mathfrak{M} ;
- 2. the space of \mathfrak{M} -indexed ∞ -logoses.

For $1 \to 2$, the diagram $\{\mathcal{U}_{\mathfrak{m}(i)}\}_{i:\mathfrak{M}}$ is interpreted as an \mathfrak{M} -indexed ∞ -logos. $2 \to 1$ is constructed by the *oplax limit* of a \mathfrak{M} -indexed ∞ -logoses.

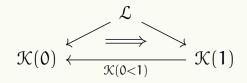
Oplax limit

Example (Oplax limit of an arrow)

Let $\mathfrak{M} \equiv \{0 < 1\}$ and let \mathcal{K} be a \mathfrak{M} -indexed ∞ -logos. An object in the oplax limit $\mathcal{L} \equiv \operatorname{opLaxLim}_{i \in \mathfrak{M}} \mathcal{K}(\mathfrak{i})$ consist of:

- objects $A_0 \in \mathcal{K}(0)$ and $A_1 \in \mathcal{K}(1)$;
- ▶ a morphism $A_{0<1} : A_0 \to \mathcal{K}(0 < 1)(A_1)$.

It is part of the universal oplax cone.



Example (Continued)

- ► The 0th projection L → K(0) has the ff right adjoint A₀ → (A₀, 1, !) which defines a LAM m(0) in L.
- ▶ The 1st projection $\mathcal{L} \to \mathcal{K}(1)$ has the ff right adjoint $A_1 \mapsto (\mathcal{K}(0 < 1)(A_1), A_1, id)$ which defines a LAM $\mathfrak{m}(1)$ in \mathcal{L} .

• $\bigcirc_{\mathfrak{m}(1)} A_0 \simeq 1$ for $A_0 \in \mathcal{K}(0)$ by definition. Thus, $(\mathcal{L}, \mathfrak{m})$ is a model of \mathfrak{M} .

Synthetic Tait computability

Continue with $\mathfrak{M} \equiv \{0 < 1\}$ and $\mathfrak{m} : \mathfrak{M} \to LAM$ satisfying Axioms A–C.

Theorem (Rijke, Shulman, and Spitters 2020)
$$\mathcal{U} \simeq \sum_{A_0:\mathcal{U}_{\mathfrak{m}(0)}} \sum_{A_1:\mathcal{U}_{\mathfrak{m}(1)}} A_0 \rightarrow \bigcirc_{\mathfrak{m}(0)}^{\mathfrak{m}(1)} A_1$$

Corollary

$$\mathfrak{U}\simeq\sum_{A_1:\mathfrak{U}_{\mathfrak{m}(1)}}A_1\to\mathfrak{U}_{\mathfrak{m}(0)}$$

Types are relations.

Synthetic Tait computability

Let $A : \mathcal{U}$ correspond to $(A_1 : \mathcal{U}_{\mathfrak{m}(1)}, A_0 : A_1 \to \mathcal{U}_{\mathfrak{m}(0)}).$

Proposition

For $A, B : \mathcal{U}$,

$$(A \to B) \simeq \sum_{f:A_1 \to B_1} \prod_{x:A_1} A_0(x) \to B_0(f(x)).$$

This is the formula for \rightarrow in the *logical relation* translation/parametricity translation.

Types are logical relations.

Introduced the notion of a mode sketch and the mode sketch axioms in HoTT.

- Internal language of diagrams of ∞ -logoses.
- Language for logical relations.

- E. Rijke, M. Shulman, and B. Spitters (2020).
 "Modalities in homotopy type theory". In: Log. Methods Comput. Sci. 16.1, Paper No. 2, 79. DOI: 10.23638/LMCS-16(1:2)2020.
- J. Sterling and R. Harper (2021). "Logical Relations as Types: Proof-Relevant Parametricity for Program Modules". In: J. ACM 68.6, 41:1–41:47. DOI: 10.1145/3474834.
- T. Uemura (2022). Normalization and coherence for ∞-type theories. arXiv: 2212.11764v1.

Limitation

Question

Can we add an axiom asserting, say, $\mathfrak{K}(0 < 1)$ is ff?

Answer

No, we can't do it naively.

$$\label{eq:asserts} \begin{split} & ``\prod_{A,B:\mathfrak{U}_{\mathfrak{m}(1)}}(A \to B) \xrightarrow{\simeq} (\bigcirc_{\mathfrak{m}(0)} A \to \bigcirc_{\mathfrak{m}(0)} B)" \\ \text{asserts that } \mathcal{K}(0 < 1) \text{ is ff } as a fibred functor over } \mathcal{L} \text{ which is stronger than just ff.} \end{split}$$

Possible solution

Add another LAM expressing "global mode".

In Sterling and Harper's synthetic Tait computability, one postulates in ETT a proposition which induces the open and closed modalities.

- In ETT, working with a proposition seems necessary.
- In HoTT, postulating a proposition is in fact equivalent to postulating the mode sketch axioms for {0 < 1}.</p>