Fibred Fibration Categories

Taichi Uemura

June 26, 2016

Fibred type-theoretic fibration categories

A "good" notion of fibred category between categorical models of HoTT.

- Construction total type-theoretic structure from fiberwise one
- Change of base

Application

Categorical description of "logical relations" [Hermida, 1993] on HoTT.

Theorem

 $t: \Pi_{A:\mathcal{U}}\Pi_{x:A}x = x \to x = x$ is homotopic to $\lambda(p: x = x).p^n$ for some $n \in \mathbb{Z}$.

Type-theoretic fibration categories

Type-theoretic fibration categories [Shulman, 2015] are sound and complete categorical models of Martin-Löf's intentional theory.

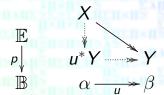
- ► A category C equipped with specific morphisms called *fibrations* corresponding to type families.
- Path induction is modeled by the lifting property.

A morphism like refl is called an acyclic cofibration.

Fibred type-theoretic fibration categories

A fibred type-theoretic fibration category is a fibred category $p : \mathbb{E} \to \mathbb{B}$ such that:

- 1. \mathbb{E} and \mathbb{B} are type-theoretic fibration categories and p preserves all structures of type-theoretic fibration category.
- 2. A fibration in \mathbb{E} factors as a *vertical* fibration followed by a *horizontal* fibration.



3. Every Cartesian morphism above an acyclic cofibration is an acyclic cofibration.

Proposition

A fibred category $p:\mathbb{E}\to\mathbb{B}$ is a fibred type-theoretic fibration category if and only if:

- 1. $\mathbb B$ and all fibers $\mathbb E_{\alpha}$ are type-theoretic fibration categories.
- 2. For any morphism $u : \alpha \to \beta$ in \mathbb{B} , $u^* : \mathbb{E}_{\beta} \to \mathbb{E}_{\alpha}$ is a strong fibration functor.
- 3. For every acyclic cofibration $u: \alpha \mapsto \beta$ and fibration $f: Y \twoheadrightarrow X$ in \mathbb{E}_{β} , $u^*: \mathbb{E}_{\beta}/X(X,Y) \to \mathbb{E}_{\alpha}/u^*X(u^*X,u^*Y)$ is surjective.
- 4. For every fibration $u : \alpha \rightarrow \beta$ in \mathbb{B} , $u^* : \mathbb{E}_{\beta} \rightarrow \mathbb{E}_{\alpha}$ has a right adjoint u_* satisfying the "Beck-Chevalley condition".

A fully categorical proof is in arXiv:1602.08206. I give a syntactic description.

A fibred category $p : \mathbb{E} \to \mathbb{B}$ models a type theory with two sorts Kind and Type.

Category theory	Type theory
$\alpha \in \mathbb{B}$	α : Kind
$X \in \mathbb{E}_{lpha}$	$X: \alpha \to Type$

The Proposition says the pairs of $(\alpha: \mathsf{Kind}, X: \alpha \to \mathsf{Type})$ form a new type theory.

Concepts	Definition	
type	$(\alpha : Kind, X : \alpha \to Type)$	
element	$(a:\alpha,x:X(a))$	
family	$(\beta: \alpha \to Kind,$	
	$Y:\Pi_{a:lpha}eta(a) o X(a) o Type)$	
section	$(u:\Pi_{a:\alpha}\beta(a),$	
	$f: \Pi_{a:\alpha}\Pi_{x:X(a)}Y(a,u(a),x))$	
pair	$((a,b): \sum_{a:\alpha} \hat{\beta}(a),$	
	$(x,y): \Sigma_{x:X(a)}Y(a,b,x)$	
identity type ?		

We need the path induction on an identity kind w.r.t. any type family over the identity kind.

$$lpha$$
: Kind $X:\Pi_{a,a':lpha}a=a' o \mathsf{Type}$ $x:\Pi_{a:lpha}X(a,a,\mathsf{refl}_a)$ $\mathsf{ind}_{=_lpha}(X,x):\Pi_{a,a':lpha}\Pi_{p:a=a'}X(a,a',p)$ $\mathsf{ind}_{=_lpha}(X,x,a,a,\mathsf{refl}_a)\equiv x$

In particular, for α : Kind, $X: \alpha \to \text{Type}$ and $p: a =_{\alpha} a'$, we have the transport along p $p_*: X(a) \to X(a')$.

The identity type of $(\alpha: Kind, X: \alpha \rightarrow Type)$ is the pair of

- \blacksquare =: $\alpha \to \alpha \to \mathsf{Kind}$ and
- $lacksquare \lambda_a a' pxx'. p_* x = x' : \Pi_{a,a':lpha} \Pi_{p:a=a'} X(a)
 ightarrow X(a')
 ightarrow \mathsf{Type}.$

It is the type of "path over path" but in different sorts.

Universes in a fibred setting

Let \mathcal{U} : Kind and \mathcal{V} : Type be universes of kinds and types. Then $(\mathcal{U}, \lambda(\alpha : \mathcal{U}).\alpha \to \mathcal{V})$ is a universe in the new type theory if, for any $\alpha : \mathcal{U}$ and $X : \alpha \to \mathcal{V}$, $\Pi_{a:\alpha}.X(a) : \mathcal{V}$. Its elements are $(\alpha : \mathcal{U}, X : \alpha \to \mathcal{V})$.

Equivalences in a fibred setting

For $(u: \alpha \to \beta, f: \Pi_{a:\alpha}X(a) \to Y(u(a)))$, An element of is-equiv(u, f) is (v: homotopy inverse of <math>u, g: homotopy inverse of f above <math>v).

Lemma

Suppose the function extensionality holds. Then

$$\mathsf{is\text{-}equiv}(u,f) \simeq (\mathsf{is\text{-}equiv}(u), \lambda_. \Pi_{a:\alpha} \mathsf{is\text{-}equiv}(f_a))$$

for all $(u: \alpha \to \beta, f: \Pi_{a:\alpha}X(a) \to Y(u(a)))$ in the new type theory.

Univalence in a fibred setting

A universe U in a type theory is *univalent* if the canonical map

 $\lambda(A:U).(A,A,\mathsf{id}_A):U\to \Sigma_{A,A':U}A\simeq A'$ is an equivalence.

The new universe $(\mathcal{U}, \lambda(\alpha : \mathcal{U}).\alpha \to \mathcal{V})$ is univalent if $\lambda(\alpha : \mathcal{U}).(\alpha, \alpha, \mathrm{id}_{\alpha})$ is an equivalence and for all $\alpha : \mathcal{U}, \lambda X.(X, X, \lambda(a : \alpha).\mathrm{id}_{X(a)}) : (\alpha \to \mathcal{V}) \to \Sigma_{X,Y:\alpha\to\mathcal{V}}\Pi_{a:\alpha}X(a) \simeq Y(a)$ is an equivalence. This holds if \mathcal{U} and \mathcal{V} are univalent and the function extensionality holds.

Outline Examples

Arrow categories

Let \mathbb{C} be a type-theoretic fibration category and write $(\mathbb{C}^{\to})_f \subset \mathbb{C}^{\to}$ for the full subcategory of all the fibrations. Then $\operatorname{\mathbf{cod}}:(\mathbb{C}^{\to})_f \to \mathbb{C}$ is a fibred type-theoretic fibration category. In this case Type \equiv Kind.

If \mathbb{C} has a univalent universe, so does $(\mathbb{C}^{\to})_f$. Originally, Shulman proved $(\mathbb{C}^{\to})_f$ is a type-theoretic fibration category [Shulman, 2015], and I give a fibred categorical description.

Change of base

Let $p: \mathbb{E} \to \mathbb{B}$ be a fibred type-theoretic fibration category and $F: \mathbb{A} \to \mathbb{B}$ be a functor preserving fibrations, pullbacks of fibrations and acyclic cofibrations. Then the change of base or pullback

$$F^*\mathbb{E} \longrightarrow \mathbb{E}$$

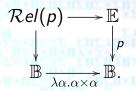
$$\downarrow \qquad \qquad \downarrow p$$

$$\mathbb{A} \xrightarrow{F} \mathbb{B}$$

is a fibred type-theoretic fibration category.

Relational model

Let $p:\mathbb{E}\to\mathbb{B}$ be a fibred type-theoretic fibration category. We have the change of base



 $\mathcal{R}el(p)$ is the category of binary families $(\alpha: \mathsf{Kind}, R: \alpha \to \alpha \to \mathsf{Type}).$

Let $t: \Pi_{A:\mathcal{U}}\Pi_{x:A}x = x \to x = x$.

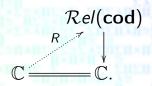
Theorem

▶ t is "natural": for any $f:A \to B$ in \mathcal{U} , $\mathsf{ap}_f \circ t \sim t \circ \mathsf{ap}_f$.

$$\begin{array}{c}
x = x \xrightarrow{t} x = x \\
\operatorname{ap}_{f} \downarrow & \operatorname{\downarrow} \operatorname{ap}_{f} \\
fx = fx \xrightarrow{t} fx = fx
\end{array}$$

If the type theory has \mathbb{S}^1 , then for some $n \in \mathbb{Z}$, $tp = p^n$ for all p : x = x.

Let $\mathbb C$ be the syntactic category of Martin-Löf type theory with a univalent universe $\mathcal U$. Then $(\mathcal U, \lambda(A, B:\mathcal U).A \to B \to \mathcal U)$ is a univalent universe in $\mathcal Rel(\mathbf{cod})$. We have a strong fibration functor



In particular, for every closed term t: A, we have $R_A: A \to A \to \mathsf{Type}$ and $R_t: R_A(t,t)$.

Let $t: \Pi_{A:\mathcal{U}}\Pi_{x:A}x = x \to x = x$. Then $R_t: \Pi_{A,B:\mathcal{U},W:A\to B\to \mathcal{U}}\Pi_{x:A,y:B,v:W(x,y)}\Pi_{p:x=x,q:y=y}(p,q)_*v = v \to (tp,tq)_*v = v$.

$$\begin{array}{cccc}
x & \xrightarrow{p} & x & x & \xrightarrow{tp} & x \\
v & = & |v| & \rightarrow & v & = & |v| \\
y & \xrightarrow{q} & y & y & \xrightarrow{tq} & y
\end{array}$$

Given $f: A \to B$ in \mathcal{U} , let $W(x, y) \equiv fx = y$. Then R_t looks like

Let $y \equiv fx$, $q \equiv \operatorname{ap}_f p$ and $v \equiv \operatorname{refl}_{fx}$ and apply the function to $\operatorname{refl}_{\operatorname{ap}_f p}$. Then $\operatorname{ap}_f(tp) = t(\operatorname{ap}_f p)$ for all x : A and p : x = x.

Suppose the type theory has $\mathbb{S}^1:\mathcal{U}$ with $b:\mathbb{S}^1$ and l:b=b. Then $(\mathbb{S}^1,=_{\mathbb{S}^1})$ is a unit circle in $\mathcal{R}el(\mathbf{cod})$ and we still have the functor $R:\mathbb{C}\to\mathcal{R}el(\mathbf{cod})$. Let y:B and q:y=y which corresponds to $f:\mathbb{S}^1\to B$. $t(l)=l^n$ for some $n\in\mathbb{Z}$ and

$$tq = t(ap_f(I))$$

$$= ap_f(t(I))$$

$$= ap_f(I^n)$$

$$= (ap_f(I))^n$$

$$= q^n$$

References I

Shulman, M. (2015).

Univalence for inverse diagrams and homotopy canonicity. *Mathematical Structures in Computer Science*,
25(05):1203–1277.