An elementary definition of opetopic sets

Taichi Uemura (Nagoya University)

February 12, 2025 Kyoto Category Theory Meeting

Geometric shapes of many-in-single-out operators in higher dimension. Used for defining weak ω -categories.

A 3-opetope is determined by its pasting diagram of sources.

Pasting diagram of sources

The opetopes form a category \mathbb{O} . An opetopic set is a set-valued presheaf on \mathbb{O} , i.e. a formal colimit of opetopes.

- Baez and Dolan [1]
- Leinster [8]
- Kock, Joyal, Batanin, and Mascari [7]
- Hermida, Makkai, and Power [4] (called multitopes and multitopic sets)
- Curien, Ho Thanh, and Mimram [3]

These are not sufficiently accessible: some amount of prerequisites; too long.

I propose elementary definitions of opetopes and opetopic sets.

- Simple structure-axiom style definitions.
- The only prerequisite is basic category theory.
- Less than two pages in A4 size.
- Equivalent to an existing one.
- I can explain our definition in full detail in 30 minutes.

We work in Univalent Foundations [9]. Constructively fine: no excluded middle; no choice axiom; no propositional resizing. Non-univalent audience may interpret types as groupoids [6] for this talk.

A category is **gaunt** if its type of objects is a set.

In non-univalent foundations, a category is gaunt if the identities are the only isomorphisms in it [2].

An ω -direct category is a gaunt category A equipped with a conservative functor $deg : A \to \omega$ called the **degree** functor. A k-step arrow, written $f : x \to^k y$, is an arrow such that deg(x) + k = deg(y). Let $Arr^k(A)$ denote the set of k-step arrows. Let $A \downarrow^k x \subset A \downarrow x$ denote the subset spanned by k-step arrows into x.

A **preopetopic set** is an ω -direct category A equipped with a subset $S(A) \subset Arr^{1}(A)$ with complement T(A). A **source arrow**, written $f: x \rightarrow^{s} y$, is an arrow in S(A). A **target arrow**, written $f: x \rightarrow^{t} y$, is an arrow in T(A).

We think of objects in a preopetopic set A as **cells**, and the arrows in A determine the configuration of the cells.

An opetopic set is a preopetopic set A satisfying eight axioms.

Axiom (O1)

 $A \downarrow^1 x$ is finite for every x : A.

Each cell has finitely many sources and targets.

Definition

A set A is **finite** if there exist $n : \mathbb{N}$ and $e : \{x : \mathbb{N} \mid x < n\} \simeq A$.

Axiom (O2)

For every object x : A of degree ≥ 1 , there exists a unique target arrow into x.

This expresses the single-out nature of opetopes.

Axiom (O3)

For every object x : A of degree 1, there exists a unique source arrow into x.

This expresses that the 1-opetope $(\bullet \rightarrow \bullet)$ is single-in.

Homogeneous/heterogeneous factorizations

Definition

Let A be a preopetopic set, $f: y \to^1 x$, and $g: z \to^1 y$. We say (f, g) is **homogeneous** if either

- both f and g are source arrows; or
- both f and g are target arrows.

We say (f, g) is **heterogeneous** if either

f is a source arrow and g is a target arrow; or

f is a target arrow and g is a source arrow.

By a **homogeneous/heterogeneous factorization** of a 2-step arrow h we mean a factorization $h = f \circ g$ such that (f, g) is homogeneous/heterogeneous.

Opetopic set axioms

Axiom (O4)

Every 2-step arrow in A has a unique homogeneous factorization.

Axiom (O5)

Every 2-step arrow in A has a unique heterogeneous factorization.

For example, a 0-cell y is embedded into a 2-cell x in exactly two ways, one is homogeneous and the other is heterogeneous.

Axiom (O6)

For every object x : A of degree ≥ 2 , there exists a 2-step arrow $r : A \downarrow^2 x$ such that, for every 2-step arrow $f : A \downarrow^2 x$, there exists a zigzag

$$f = f_0 \xrightarrow{s_0} g_0 \xrightarrow{t \ (t_0)} f_1 \xrightarrow{s_1} \cdots \xrightarrow{s_{m-1}} g_{m-1} \xrightarrow{t \ (t_{m-1})} f_m = r,$$

where g_i 's are source arrows into x, s_i 's are source arrows in $A \downarrow x$, and t_i 's are target arrows in $A \downarrow x$.

Tree structures on pasting diagrams

The pasting diagram on the left has the tree structure on the right. Dots and lines in the tree correspond to 2-dimensional cells and 1-dimensional cells, respectively, in the pasting diagram.

Axiom (O7)

For every target arrow $f: y \to^t x$ in A and object z: A of degree $\leq deg(y) - 2$, the postcomposition map $f_!: Arr_A(z, y) \to Arr_A(z, x)$ is injective.

Two ways to embed an n-cell to (n+k)-cell for $k \ge 2$ are not distinguished.

Axiom (08)

For every $k \ge 3$, every k-step arrow $y \rightarrow^k x$ in A factors as $f \circ g$ such that f is a (k-1)-step arrow and g is a 1-step arrow.

The 1-step arrows generate A.

An **opetope** is an opetopic set in which a terminal object exists.

Let OSet denote the category of small opetopic sets whose morphisms are those functors preserving degrees, source arrows, and target arrows. Let $\mathbb{O} \subset OSet$ denote the full subcategory spanned by opetopes.

- **OSet** \simeq **Psh**(\mathbb{O}).
- Definition of pasting diagrams.
- Substitution and grafting of pasting diagrams.
- Equivalence with the polynomial monad definition by Kock, Joyal, Batanin, and Mascari [7].
- Presentation of the category of opetopes equivalent to Ho Thanh's [5].

- John C. Baez and James Dolan. "Higher-dimensional algebra. III. n-categories and the algebra of opetopes". In: Adv. Math. 135.2 (1998), pp. 145-206. DOI: 10.1006/aima.1997.1695.
- [2] Clark Barwick and Christopher Schommer-Pries. "On the unicity of the theory of higher categories". In: J. Amer. Math. Soc. 34.4 (2021), pp. 1011–1058. DOI: 10.1090/jams/972.
- [3] Pierre-Louis Curien, Cédric Ho Thanh, and Samuel Mimram. "Type theoretical approaches to opetopes". In: *Higher Structures* 6.1 (2022), pp. 80–181.

References II

- [4] Claudio Hermida, Michael Makkai, and John Power. "On weak higher-dimensional categories. I. 3". In: *J. Pure Appl. Algebra* 166.1-2 (2002), pp. 83–104. DOI: 10.1016/S0022-4049(01)00014-7.
- [5] Cédric Ho Thanh. The equivalence between many-to-one polygraphs and opetopic sets. 2021. arXiv: 1806.08645v4.
- [6] Martin Hofmann and Thomas Streicher. "The groupoid interpretation of type theory". In: *Twenty-five years of constructive type theory (Venice, 1995)*. Vol. 36. Oxford Logic Guides. New York: Oxford Univ. Press, 1998, pp. 83–111. DOI: 10.1093/oso/9780198501275.003.0008.

References III

- Joachim Kock, André Joyal, Michael Batanin, and Jean-François Mascari. "Polynomial functors and opetopes". In: Adv. Math. 224.6 (2010), pp. 2690–2737. DOI: 10.1016/j.aim.2010.02.012.
- [8] Tom Leinster. Higher Operads, Higher Categories. London Mathematical Society Lecture Note Series. Cambridge University Press, 2004. DOI: 10.1017/CB09780511525896. arXiv: math/0305049v1.
- [9] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. URL: http://homotopytypetheory.org/book/.

Proposition

Let $F_1, F_2 : A \to A'$ be morphisms of opetopic sets, x : A, and x' : A' such that $F_1(x) = F_2(x) = x'$. Then $F_1 \downarrow x, F_2 \downarrow x : A \downarrow x \to A' \downarrow x'$ are identical.

Proposition

Let $F : A \to A'$ be a morphism of opetopic sets and x : A. Then $F \downarrow x : A \downarrow x \to A' \downarrow F(x)$ is an equivalence.

Corollary

 $\ensuremath{\mathbb{O}}$ is a gaunt category.

Corollary

Every morphism of opetopic sets is a discrete fibration.

Corollary

 $\mathbf{OSet} \downarrow A \simeq \mathbf{Psh}(A)$ for every $A : \mathbf{OSet}$.

Proposition

Let A be an opetopic set. Then $A \downarrow x$ is finite for every x : A.

Corollary

Every opetope is finite.

Corollary

 \mathbb{O} is small.

The opetopic set of opetopes

We extend \mathbb{O} to a preceptopic set.

- $deg_{\mathbb{O}}(A) \equiv deg_{A}(*_{A})$, where $*_{A} : A$ is the terminal object.
- ▶ $F: A' \to A$ is a source/target arrow if $F(*_{A'}) \to *_A$ is a source/target arrow.

Proposition

Let A be an opetopic set. The morphism of preopetopic sets $A \to \mathbb{O} \downarrow A$ that sends x : A to the forgetful functor $x_! : A \downarrow x \to A$ is an equivalence.

Corollary

 \mathbb{O} is an opetopic set.

The terminal opetopic set

Proposition

 $\mathbb{O}: OSet$ is the terminal object.

Proof.

 $(x\mapsto A\downarrow x):A\to \mathbb{O}$ is the unique morphism.

Corollary

 $OSet \simeq Psh(\mathbb{O}).$

The polynomial monad definition of opetopes

By Kock, Joyal, Batanin, and Mascari [7].

- ► A polynomial functor on I is an endofunctor on $Set \downarrow I$ of the form $P(X)_i = \coprod_{b:B(P)_i} \prod_{e:E_P(b)} X_{s_P(e)}$.
- A polynomial monad on I is a monad on Set ↓ I whose underlying functor is a polynomial functor and unit and multiplication are cartesian natural transformations.
- For every polynomial monad P on I, there is a polynomial monad P⁺ on B(P), called the Baez-Dolan construction, such that Alg(P⁺) ≃ PM_I ↓ P.
- ▶ The set of KJBM n-opetopes $\mathbb{O}_n^{\text{KJBM}}$ and the polynomial monad Z_n on $\mathbb{O}_n^{\text{KJBM}}$ are defined by $\mathbb{O}_0^{\text{KJBM}} \equiv 1$, $Z_0(X) \equiv X$, $\mathbb{O}_{n+1}^{\text{KJBM}} \equiv B(Z_n)$, and $Z_{n+1} \equiv Z_n^+$.

Equivalence with the polynomial monad definition

Theorem

 $\mathbb{O}_n\simeq \mathbb{O}_n^{\mathrm{KJBM}}$

Proof sketch.

Construct a polynomial monad Y_n on \mathbb{O}_n and show that $Y_0\simeq Z_0$ and $Y_{n+1}\simeq Y_n^+.$

There are two compositional structures on pasting diagrams, **substitution** and **grafting**. The polynomial monad structure on \mathbf{Y}_n is defined by substitution, and the equivalence $\mathbf{Y}_{n+1} \simeq \mathbf{Y}_n^+$ is proved by interaction between substitution and grafting.

Ho Thanh [5] gives a definition of the category of opetopes, whose objects are the KJBM opetopes, by generators and relations. Our category of opetopes \mathbb{O} has the following presentation, which is shown equivalent to Ho Thanh's.

Proposition

Let A be an opetopic set. Then the underlying category of A is presented by:

Generators all the 1-step arrows in A;

Relations all the equations $f_1 \circ g_1 = f_2 \circ g_2$ that hold in A such that (f_1, g_1) is heterogeneous and (f_2, g_2) is homogeneous.