A universal property of the $(\infty, 1)$ -category of presentable $(\infty, 1)$ -categories

Taichi Uemura

May 31, 2022

1 Introduction

In this note, we prove the following universal property of the $(\infty, 1)$ -category of presentable (n, 1)-categories.

Theorem 1.1. Let $-1 \leq n \leq \infty$. The $(\infty, 1)$ -category of presentable (n, 1)-categories and right adjoint functors between them is the initial $(\infty, 1)$ -category equipped with:

- small limits;
- an exponentiable morphism $\pi: \mathbf{S}_{\bullet} \to \mathbf{S}$

satisfying that π is univalent and (n-1)-truncated and that π -small morphisms are closed under identities, composition, diagonals, and small products.

We also prove variants parameterized by accessibility rank.

Theorem 1.2. Let $-1 \le n \le \infty$. For a regular cardinal λ , the $(\infty, 1)$ -category of λ -presentable (n, 1)-categories and right adjoint functors between them preserving λ -filtered colimits is the initial $(\infty, 1)$ -category equipped with:

- small limits;
- an exponentiable morphism $\pi: \mathbf{S}_{\bullet} \to \mathbf{S}$

satisfying that π is univalent and (n-1)-truncated and that π -small morphisms are closed under identities, composition, diagonals, λ -small products, and retracts.

We prove the case when $n = \infty$ in Section 7. The case when $n < \infty$ is derived from it and proved in Section 8. In Section 3, we recall the definition of and basic facts about *exponentiable morphisms*. In Section 4, we recall the notion of *uni*valence and the definition of *small morphisms* with respect to a given univalent morphism. We review the theory of *presentable* $(\infty, 1)$ -categories in Section 5. One of the most important theorems is the *Gabriel-Ulmer duality*, which asserts that the $(\infty, 1)$ -category of λ -presentable $(\infty, 1)$ -categories is contravariantly equivalent to the $(\infty, 1)$ -category of $(\infty, 1)$ -categories with λ -small limits and splittings of idempotents. Our main theorem will follow from the structure of the latter $(\infty, 1)$ -category. A key fact is that a slice of an $(\infty, 1)$ -category with λ -small limits is a certain pushout in the $(\infty, 1)$ -category of $(\infty, 1)$ -categories with λ -small limits, which we review in Section 6.

Background and related work The main theorem is considered as a variant of the author's previous work [20] in the sense that both characterize $(\infty, 1)$ categories of *theories* in terms of *exponentiable morphisms*. The previous result characterizes the opposite of the category of generalized algebraic theories in terms of exponentiable morphisms. By the Gabriel-Ulmer duality, presentable categories are identified with limit theories, and presentable $(\infty, 1)$ -categories are identified with "limit ∞ -theories". Therefore, the main theorem in this note characterizes the $(\infty, 1)$ -category of limit ∞ -theories in terms of exponentiable morphisms.

The $(\infty, 1)$ -category of limit ∞ -theories itself can be regarded as a (large) limit ∞ -theory, since it admits small limits. The exponentiability of π in the statement of the main theorem suggests that this limit ∞ -theory is more natural to think of as a *second-order* limit ∞ -theory in the sense that it contains operators from function types over fibers of π . This is analogous to the result of Fiore and Mahmoud [5, 4] that the algebraic theory of clones, which are equivalent to single-sorted algebraic theories, is simply the second-order algebraic theory of objects. Arkor and McDermott [1] observe its higher-order variant: the algebraic theory of k-th-order single-sorted algebraic theories is the (k + 1)-th-order algebraic theory of objects. Our main theorem could be explained in a suitable framework of higher-order limit ∞ -theories.

Hoang Kim Nguyen and the author gave in [13, Corollary 5.21] a universal property of similar kind for the opposite of the $(\infty, 1)$ -category of $(\infty, 1)$ categories with finite limits: it is the initial $(\infty, 1)$ -category with small limits equipped with a univalent exponentiable morphism u such that u-small morphisms are closed under identities, composition, and diagonals. This is different from Theorem 1.2 for $\lambda = \aleph_0$, because finitely presentable $(\infty, 1)$ -categories are contravariantly equivalent to $(\infty, 1)$ -categories with finite limits and splittings of idempotents. Nevertheless, a minor modification of the proof could give an alternative, direct proof of [13, Corollary 5.21] (the original proof uses the theory of ∞ -type theories which are introduced for other purposes).

It is worth pointing out similarity between the main theorem and Kaposi and Kovács's type theory for defining higher inductive types [9]. Their type theory has a universe, corresponding to our $\pi : \mathbf{S}_{\bullet} \to \mathbf{S}$, and dependent function types over types from that universe, corresponding to the exponentiability of our π . This is not a coincidence, because higher inductive types are to be initial algebras [18] for limit ∞ -theories. Note that the universe of Kaposi and Kovács's type theory is not univalent. Univalence is not necessary for presenting limit ∞ -theories but gives a correct notion of equivalence between limit ∞ -theories: two limit ∞ -theories are equivalent when the $(\infty, 1)$ -categories of models are equivalent.

2 Preliminaries

By an ∞ -category we mean a weak higher category in which all the *m*-cells for m > 1 are invertible. For concreteness, we use *quasi-categories* [11, 8, 3] as models of ∞ -categories, but all the results are proved model-independently. For an ∞ -category C, let Obj(C) denote the space of objects, that is, the largest ∞ -groupoid contained in C. For objects $x, y \in C$, let $Map_{\mathcal{C}}(x, y)$ denote the mapping space from x to y and $Eq_{\mathcal{C}}(x, y) \subset Map_{\mathcal{C}}(x, y)$ the subspace of invertible morphisms.

By a subcategory of C we mean a monomorphism $F : C' \to C$ in the ∞ category of ∞ -categories. This is equivalent to that F is faithful and, for any objects $x, y \in C'$, the induced monomorphism $\operatorname{Eq}_{C'}(x, y) \to \operatorname{Eq}_{\mathcal{C}}(F(x), F(y))$ is surjective. A subcategory of C is usually specified by a subclass C'_0 of objects in C and a subclass C'_1 of morphisms in C between objects in C'_0 satisfying that C'_1 is closed under identities and composition and that any equivalence in C between objects in C'_0 belongs to C'_1 . A full subcategory of C is a fully faithful functor $F : C' \to C$. It is indeed a subcategory of C as $\operatorname{Eq}_{C'}(x, y) \simeq \operatorname{Eq}_{\mathcal{C}}(F(x), F(y))$. A full subcategory of C is usually specified by a subclass of objects in C.

 λ denotes a regular cardinal. α and β denote inaccessible cardinals.

 $\mathbf{S}(\alpha)$ denotes the ∞ -category of α -small spaces. We may suppress (α) when size distinction is not important. $\mathbf{Cat}(\alpha)$ denotes the ∞ -category of α -small ∞ -categories. For ∞ -categories \mathcal{C} and \mathcal{D} , let $\mathbf{Fun}(\mathcal{C}, \mathcal{D})$ denote the ∞ -category of functors from \mathcal{C} to \mathcal{D} and natural transformations between them. When \mathcal{C} and \mathcal{D} have λ -small limits, we define $\mathbf{Fun}_{\mathrm{Lex}(\lambda)}(\mathcal{C}, \mathcal{D}) \subset \mathbf{Fun}(\mathcal{C}, \mathcal{D})$ to be the full subcategory spanned by functors preserving λ -small limits. We define $\mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\alpha) \subset \mathbf{Cat}(\alpha)$ to be the subcategory whose objects are the ∞ categories with λ -small limits and splittings of idempotents and whose morphisms are the functors between them preserving λ -small limits. Note that splittings of idempotents are redundant when $\lambda > \aleph_0$ since they are countable limits.

3 Exponentiable morphisms

We collect basic facts about exponentiable morphisms.

Notation 3.1. Let $u: y \to x$ be a morphism in an ∞ -category \mathcal{C} with finite limits. Let $u^*: \mathcal{C}_{/x} \to \mathcal{C}_{/y}$ denote the pullback functor along u, and let $u_!$ denote its left adjoint, that is, the postcomposition functor with u. When x is the terminal object, we write y^* and $y_!$ for u^* and $u_!$, respectively.

Definition 3.2. A morphism $u: y \to x$ in an ∞ -category \mathcal{C} with finite limits is *exponentiable* if the pullback functor $u^*: \mathcal{C}_{/x} \to \mathcal{C}_{/y}$ has a right adjoint u_* called the *pushforward along u*. **Proposition 3.3.** For a morphism $u : y \to x$ in an ∞ -category C with finite limits, the following are equivalent:

- 1. *u* is exponentiable;
- 2. the functor $(_ \times_x y) : \mathcal{C}_{/x} \to \mathcal{C}_{/x}$ has a right adjoint $\operatorname{Map}_{r}(y, _)$;
- 3. the composite $\mathcal{C}_{/x} \xrightarrow{u^*} \mathcal{C}_{/y} \xrightarrow{y_1} \mathcal{C}$ has a right adjoint $\underline{\operatorname{Fam}}_u$.

Moreover, for any functor $F : \mathcal{C} \to \mathcal{D}$ between ∞ -categories with finite limits preserving finite limits and sending u to an exponentiable morphism, F commutes with one of u_* , $\underline{\operatorname{Map}}_x(y, \underline{\})$, and $\underline{\operatorname{Fam}}_u$ if and only if F commutes with all of them.

Proof. This is well-known in the 1-categorical case [e.g. 14, Corollary 1.2]. We give a proof to confirm that this is also true in the ∞ -context. We have the following commutative diagram.

Since $x_{!}, y_{!}$, and $u_{!}$ are left adjoints, $1 \Rightarrow 2$ and $2 \Rightarrow 3$ follow. Suppose that $\underline{\operatorname{Fam}}_{u}$ exists. Then, for any $z \in \mathcal{C}_{/y}$, the pushforward $u_{*}z \in \mathcal{C}_{/x}$ is defined by the pullback

where the bottom morphism is the unit for $\underline{\operatorname{Fam}}_u$ at $\operatorname{id}_x \in \mathcal{C}_{/x}$. The last assertion is clear from the construction of u_* , $\underline{\operatorname{Map}}_x(y, .)$, and $\underline{\operatorname{Fam}}_u$ from each other. \Box

Example 3.4. The forgetful functor $\pi(\alpha) : \mathbf{S}_{\bullet}(\alpha) \to \mathbf{S}(\alpha)$ from the ∞ -category of α -small pointed spaces to the ∞ -category of α -small spaces is exponentiable in $\mathbf{Cat}(\beta)$ where $\alpha < \beta$. Indeed, it is a left fibration and then [2, Corollary A.22] applies. More concretely, $\underline{\operatorname{Fam}}_{\pi(\alpha)}(\mathcal{C})$ for $\mathcal{C} \in \mathbf{Cat}(\beta)$ is the so-called family fibration and obtained by the Grothendieck construction for the functor

$$\mathbf{S}^{\mathrm{op}}(\alpha) \ni A \mapsto \mathcal{C}^A \in \mathbf{Cat}(\beta).$$

Proposition 3.5. Let

$$\begin{array}{ccc} y' & \xrightarrow{w} & y \\ u' \downarrow & \stackrel{\neg}{} & \downarrow u \\ x' & \xrightarrow{v} & x \end{array}$$

be a pullback in an ∞ -category C with finite limits. If u is exponentiable, then so is u'. Moreover, for a functor $F : C \to D$ between ∞ -categories with finite limits preserving finite limits and sending u to an exponentiable morphism, if Fcommutes with u_* , then it commutes with u'_* .

Proof. This is also well-known in the 1-categorical case [e.g. 14, Corollary 1.4], and the proof also works in the ∞ -context. Indeed, we have the following commutative diagram

and $v_!$ has the right adjoint v^* , so $\underline{\operatorname{Fam}}_{u'}$ is constructed as $v^* \circ \underline{\operatorname{Fam}}_u$. The last assertion is clear from this construction of $\underline{\operatorname{Fam}}_{u'}$.

4 Complete universes

We think of a morphism $u: y \to x$ in an ∞ -category with finite limits as a *universe*. We introduce some concepts around universes.

We recall the notion of univalence [7, 16].

Definition 4.1. A morphism $u : y \to x$ in an ∞ -category with finite limits C is *univalent* if, for any object $z \in C$, the map of spaces

$$\operatorname{Map}_{\mathcal{C}}(z, x) \ni v \mapsto v^* y \in \operatorname{Obj}(\mathcal{C}_{/z})$$

is mono.

Example 4.2. $\pi(\alpha) : \mathbf{S}_{\bullet}(\alpha) \to \mathbf{S}(\alpha)$ is univalent in $\mathbf{Cat}(\beta)$. This is because it classifies left fibrations with α -small fibers in the sense that, for any $\mathcal{C} \in \mathbf{Cat}(\beta)$, the functor

$$\operatorname{Fun}(\mathcal{C}, \mathbf{S}(\alpha)) \ni F \mapsto F^* \mathbf{S}_{\bullet}(\alpha) \in \operatorname{Cat}(\beta)_{/\mathcal{C}}$$

is fully faithful and its image is the class of left fibrations over C with α -small fibers.

Proposition 4.3. Let C be an ∞ -category with finite limits and $C' \subset C$ a subcategory closed under finite limits. If a morphism $u : y \to x$ in C' is univalent in C, then it is univalent in C'.

Proof. Let $z \in C'$ be an object. Since $C' \subset C$ is closed under finite limits, we have the following commutative diagram.

au_____* au

$$\begin{array}{ccc} \operatorname{Map}_{\mathcal{C}'}(z,x) & \xrightarrow{\mathcal{C} \to \mathcal{C}' g} & \operatorname{Obj}(\mathcal{C}'_{/z}) \\ & & & \downarrow \\ & & & \downarrow \\ & & \operatorname{Map}_{\mathcal{C}}(z,x) & \xrightarrow{}_{v \mapsto v^* y} & \operatorname{Obj}(\mathcal{C}_{/z}). \end{array}$$

The vertical maps are mono since $\mathcal{C}' \to \mathcal{C}$ is mono, and the bottom map is mono since u is univalent. Hence, the top map is mono as well.

A univalent morphism induces an indexed ∞ -category consisting of *small* morphisms.

Definition 4.4. Let $u: y \to x$ be a univalent morphism in an ∞ -category C with finite limits. We say a morphism $u': y' \to x'$ is *u-small* if there exists a pullback

$$\begin{array}{cccc} y' & & & & \\ y' & & & & \\ u' \downarrow & & & & \\ x' & & & & \\ x' & & & & \\ \end{array}$$

Note that the univalence of u implies that such a pullback is unique.

Construction 4.5. For a univalent morphism $u: y \to x$ in an ∞ -category \mathcal{C} with finite limits, let $\mathbf{O}_{\mathcal{C}}^u: \mathcal{C}^{\mathrm{op}} \to \mathbf{Cat}$ be the functor sending $z \in \mathcal{C}$ to the full subcategory of $\mathcal{C}_{/z}$ spanned by the *u*-small morphisms. The action of morphisms is given by pullback. For a functor $F: \mathcal{C} \to \mathcal{D}$ preserving finite limits, we have a canonical natural transformation $\mathbf{O}_{\mathcal{C}}^u(z) \to \mathbf{O}_{\mathcal{D}}^{F(u)}(F(z))$ for $z \in \mathcal{C}$.

We consider when $\mathbf{O}_{\mathcal{C}}^{u}(z)$ has certain limits.

Definition 4.6. Let $C \in \operatorname{Cat}_{\operatorname{Lex}(\lambda)}$. By a λ -complete universe in C we mean a univalent exponentiable morphism u in C such that u-small morphisms are closed under identities, composition, diagonals, λ -small products, and retracts.

Remark 4.7. Closure under retracts is redundant when $\lambda > \aleph_0$.

Remark 4.8. Closure under λ -small products is redundant when $\lambda = \aleph_0$.

Example 4.9. $\pi(\alpha) : \mathbf{S}_{\bullet}(\alpha) \to \mathbf{S}(\alpha)$ is an α -complete universe in $\mathbf{Cat}(\beta)$, since left fibrations with α -small fibers are closed under identities, composition, diagonals, α -small products, and retracts.

Proposition 4.10. Let $u : y \to x$ be a λ -complete universe in $\mathcal{C} \in \mathbf{Cat}_{\mathrm{Lex}(\lambda)}$. The functor $\mathbf{O}^{u}_{\mathcal{C}} : \mathcal{C}^{\mathrm{op}} \to \mathbf{Cat}$ factors through $\mathbf{Cat}_{\mathrm{Lex}(\lambda)}$.

Proof. By the closure properties of u-small morphisms.

Proposition 4.11. Let $u : y \to x$ be a λ -complete universe in $\mathcal{C} \in \operatorname{Cat}_{\operatorname{Lex}(\lambda)}$. For morphisms $v : y' \to x'$ and $w : z' \to y'$, if v is u-small, then w is u-small if and only if $v \circ w$ is.

Proof. Because u-small morphisms are closed under pullbacks, composition, and diagonals.

 $\mathbf{O}^{u}_{\mathcal{C}}$ is representable in the following sense.

Proposition 4.12. Let $u: y \to x$ be a λ -complete universe in $\mathcal{C} \in \operatorname{Cat}_{\operatorname{Lex}(\lambda)}$.

- 1. $\operatorname{Obj}(\mathbf{O}^{u}_{\mathcal{C}}(z)) \simeq \operatorname{Map}_{\mathcal{C}}(z, x);$
- 2. $\operatorname{Obj}(\mathbf{O}^u_{\mathcal{C}}(z)_{\mathrm{id}_z/}) \simeq \operatorname{Map}_{\mathcal{C}}(z, y);$
- 3. The presheaf $z \mapsto \operatorname{Obj}(\mathbf{O}^u_{\mathcal{C}}(z)^{\rightarrow})$ is representable. The representing object is denoted by $\operatorname{Map}(u)$.

Proof. The first and second equivalences are immediate by construction. For the last, we define $\underline{\operatorname{Map}}(u) \in \mathcal{C}_{/x \times x}$ to be $\underline{\operatorname{Map}}_{x \times x}(y \times x, x \times y)$. Note that, by Proposition 3.5, the morphism $u \times x : y \times x \to x \times x$ is exponentiable. \Box

Remark 4.13. Map(u) is part of the complete Segal object associated to u [15].

We introduce an ∞-category of ∞-categories equipped with a $\lambda\text{-complete}$ universe.

Definition 4.14. For $\lambda \leq \alpha < \beta$, we define $\operatorname{Cat}_{\operatorname{Lex}(\alpha),\operatorname{Univ}(\lambda)}(\beta)$ to be the ∞ -category whose objects are the β -small ∞ -categories with α -small limits and equipped with a λ -complete universe and whose morphisms are the functors between them preserving α -small limits, specified λ -complete universes, and pushforwards along specified λ -complete universes.

5 Presentable ∞ -categories

We recall the definition and basic properties of presentable ∞ -categories [11, Section 5.5]. We also find a λ -complete universe in an ∞ -category of presentable ∞ -categories (Proposition 5.3). The *Gabriel-Ulmer duality* is rephrased using that universe (Proposition 5.8).

Definition 5.1. For $\lambda < \alpha$, we say an ∞ -category \mathcal{X} is (α, λ) -presentable if it is equivalent to $\mathbf{Ind}_{\lambda}^{\alpha}(\mathcal{C})$ for some α -small ∞ -category \mathcal{C} with λ -small colimits, where $\mathbf{Ind}_{\lambda}^{\alpha}$ is the completion under α -small λ -filtered colimits. For convention, we say \mathcal{X} is (α, α) -presentable if it is (α, λ) -presentable for some $\lambda < \alpha$. By definition, any (α, λ) -presentable ∞ -category is β -small for $\lambda \leq \alpha < \beta$. We define $\mathbf{Pr}_{\lambda}^{\mathbf{R}}(\alpha) \subset \mathbf{Cat}(\beta)$ to be the subcategory spanned by the (α, λ) -presentable ∞ categories and right adjoint functors between them preserving α -small λ -filtered colimits.

Proposition 5.2 ([11, Proposition 5.5.7.6]). $\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha) \subset \mathbf{Cat}(\beta)$ is closed under α -small limits for $\lambda \leq \alpha < \beta$.

Proposition 5.3. For $\lambda \leq \alpha$, the functor $\pi(\alpha) : \mathbf{S}_{\bullet}(\alpha) \to \mathbf{S}(\alpha)$ belongs to $\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha)$ and is a λ -complete universe.

Proposition 5.3 is split into a few lemmas.

Lemma 5.4. $\pi(\alpha)$ belongs to $\mathbf{Pr}^{\mathrm{R}}_{\lambda}(\alpha)$ and is univalent.

Proof. Since $\mathbf{S}_{\bullet}(\alpha) \simeq \mathbf{S}(\alpha)_{1/}$, it belongs to $\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha)$ because (α, λ) -presentable ∞ -categories are closed under coslice [11, Proposition 5.5.3.11]. The projection $\pi(\alpha)$ is in $\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha)$ as it has the left adjoint (-+1) and preserves filtered colimits. The univalence of $\pi(\alpha)$ follows from Propositions 4.3 and 5.2 and Example 4.2.

Lemma 5.5. For a morphism $p: \mathcal{Y} \to \mathcal{X}$ in $\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha)$, the following are equivalent:

- 1. p is $\pi(\alpha)$ -small in $\mathbf{Pr}^{\mathrm{R}}_{\lambda}(\alpha)$;
- the functor p is a left fibration representable by some λ-compact object of X;
- 3. the functor p is a left fibration and preserves λ -compact objects.

Proof. $1 \Rightarrow 2$. Suppose that p is the pullback of $\pi(\alpha)$ along a morphism $F : \mathcal{X} \to \mathbf{S}(\alpha)$. By definition, F has a left adjoint and preserves α -small λ -filtered colimits, and thus F is representable by some λ -compact object of \mathcal{X} .

 $2 \Rightarrow 1$. If p is representable by a λ -compact object $A \in \mathcal{X}$, then it is the pullback of $\pi(\alpha)$ along the functor $\operatorname{Map}_{\mathcal{X}}(A, _{-}) : \mathcal{X} \to \mathbf{S}(\alpha)$, which belongs to $\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha)$.

 $2 \Rightarrow 3$. The left fibration cod : $\mathcal{X}_{A/} \to \mathcal{X}$ preserves λ -compact objects whenever $A \in \mathcal{X}$ is λ -compact.

 $3 \Rightarrow 2$. If p is a left fibration, then it is representable because \mathcal{Y} has an initial object. If cod : $\mathcal{X}_{A/} \to \mathcal{X}$ preserves λ -compact objects, then A is λ -compact as it is the image of the initial object by cod.

Lemma 5.6. $\pi(\alpha)$ -small morphisms in $\mathbf{Pr}_{\lambda}^{\mathbf{R}}(\alpha)$ are closed under identities, composition, diagonals, λ -small products, and retracts.

Proof. The closure under identities and composition is immediate from Lemma 5.5. For diagonals, it suffices to show that $\mathcal{X}_{A/} \to \mathcal{X}_{A/} \times_{\mathcal{X}} \mathcal{X}_{A/} \simeq \mathcal{X}_{A+A/}$ is $\pi(\alpha)$ -small whenever $A \in \mathcal{X}$ is λ -compact, but this is true because the codiagonal $A + A \to A$ is a λ -compact object of $\mathcal{X}_{A+A/}$. For λ -small products (retracts), use the fact that λ -compact objects are closed under λ -small coproducts (retracts).

Proof of Proposition 5.3. It remains to show that $\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha) \subset \mathbf{Cat}(\beta)$ is closed under $\underline{\mathrm{Fam}}_{\pi(\alpha)}$. For a (α, λ) -presentable ∞ -category \mathcal{X} , the cartesian fibration $\underline{\mathrm{Fam}}_{\pi(\alpha)}(\mathcal{X}) \to \mathbf{S}(\alpha)$ is a presentable fibration in the sense of Gepner, Haugseng, and Nikolaus [6]. It then follows that $\underline{\mathrm{Fam}}_{\pi(\alpha)}(\mathcal{X}) \to \mathbf{S}(\alpha)$ belongs to $\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha)$ [6, Theorem 10.3]. Note that [6, Theorem 10.3] does not mention the accessibility rank, but we can calculate it from the proof of that theorem. It is straightforward to see that the unit and counit for $\underline{\mathrm{Fam}}_{\pi(\alpha)}$ belong to $\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha)$, and thus $\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha) \subset \mathbf{Cat}(\beta)$ is closed under $\underline{\mathrm{Fam}}_{\pi(\alpha)}$.

By Propositions 5.2 and 5.3, $(\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha), \pi(\alpha))$ is an object of $\mathbf{Cat}_{\mathrm{Lex}(\alpha), \mathrm{Univ}(\lambda)}(\beta)$. We state a version of the *Gabriel-Ulmer duality* (Proposition 5.8). **Lemma 5.7.** Cat_{Lex(λ)}(β) is (β , α)-presentable for $\lambda \leq \alpha < \beta$.

Proof. See [10, Lemma 4.8.4.2]. One can also construct $\mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\beta)$ directly in $\mathbf{Pr}^{\mathrm{R}}_{\alpha}(\beta)$ using Proposition 5.2.

Proposition 5.8. For $\lambda \leq \alpha < \beta$, the functor

$$\mathbf{O}_{\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha)}^{\pi(\alpha)}:\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha)^{\mathrm{op}}\to\mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\beta)$$

is fully faithful, and its image is the class of α -compact objects. Moreover, the inverse of the induced equivalence takes a α -compact object $\mathcal{C} \in \mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\beta)$ to $\mathbf{Fun}_{\mathrm{Lex}(\lambda)}(\mathcal{C}, \mathbf{S}(\alpha))$.

Proof. By Lemma 5.5, $\mathbf{O}_{\mathbf{Pr}_{\lambda}^{R}(\alpha)}^{\pi(\alpha)}(\mathcal{X})$ is equivalent to the opposite of the full subcategory of \mathcal{X} spanned by the λ -compact objects. The claim then follows from [11, Proposition 5.5.7.10] when $\lambda < \alpha$ and from [19, Proposition 5.1.4] when $\lambda = \alpha$. Note that in [11, Proposition 5.5.7.10], the inverse is given by $\mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\alpha) \ni \mathcal{C} \mapsto \mathbf{Ind}_{\lambda}^{\alpha}(\mathcal{C}^{\mathrm{op}}) \in \mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha)^{\mathrm{op}}$, but this is equivalent to $\mathbf{Fun}_{\mathrm{Lex}(\lambda)}(-, \mathbf{S}(\alpha))$ by [11, Corollary 5.3.5.4], so the last assertion follows when $\lambda < \alpha$. When $\lambda = \alpha$, the last assertion is because $\mathcal{C} \simeq \mathbf{Fun}_{\mathrm{Lex}(\alpha)}(\mathcal{C}^{\mathrm{op}}, \mathbf{S}(\alpha))$ when \mathcal{C} is (α, α) -presentable by [11, Proposition 5.5.2.2].

6 Slices of complete ∞ -categories

Our main theorem is the initiality of $(\mathbf{Pr}_{\lambda}^{R}(\alpha), \pi(\alpha))$ in $\mathbf{Cat}_{\mathrm{Lex}(\alpha),\mathrm{Univ}(\lambda)}(\beta)$ (Theorem 7.1). By Proposition 5.8, $\mathbf{Pr}_{\lambda}^{R}(\alpha)$ is embedded into $\mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\beta)^{\mathrm{op}}$, so it is good to study $\mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\beta)$. The most important tool is the following universal property of slices.

Lemma 6.1 ([13, Proposition 3.25]). Let C be an ∞ -category with finite limits and $x \in C$ an object. For any ∞ -category D with finite limits, the square

$$\begin{array}{ccc} \operatorname{Obj}(\mathbf{Fun}_{\operatorname{Lex}(\aleph_0)}(\mathcal{C}_{/x},\mathcal{D})) & \xrightarrow{\operatorname{ev}\Delta_x} & \operatorname{Obj}(\mathcal{D}_{1/}) \\ & & & & \downarrow^{\operatorname{cod}} \\ & & & \downarrow^{\operatorname{cod}} \\ & & \operatorname{Obj}(\mathbf{Fun}_{\operatorname{Lex}(\aleph_0)}(\mathcal{C},\mathcal{D})) & \xrightarrow{& \operatorname{ev}_x} & \operatorname{Obj}(\mathcal{D}) \end{array}$$

is a pullback, where we regard the diagonal $\Delta_x : x \to x \times x$ as a global section $1 \to x^*x$ in $\mathcal{C}_{/x}$. Moreover, the inverse of the induced map $\operatorname{Obj}(\operatorname{Fun}_{\operatorname{Lex}(\aleph_0)}(\mathcal{C}_{/x}, \mathcal{D})) \to \operatorname{Obj}(\operatorname{Fun}_{\operatorname{Lex}(\aleph_0)}(\mathcal{C}, \mathcal{D})) \times_{\operatorname{Obj}(\mathcal{D})} \operatorname{Obj}(\mathcal{D}_{1/})$ sends an object (F, u) to the composite

$$\mathcal{C}_{/x} \xrightarrow{F_{/x}} \mathcal{D}_{/F(x)} \xrightarrow{u^*} \mathcal{D}_{/1} \simeq \mathcal{D}.$$

Proposition 6.2. Let C be an ∞ -category with λ -small limits and $x \in C$ an object. For any ∞ -category D with λ -small limits, the square

is a pullback.

Proof. The equivalence $\operatorname{Obj}(\operatorname{Fun}_{\operatorname{Lex}(\aleph_0)}(\mathcal{C}_{/x}, \mathcal{D})) \simeq \operatorname{Obj}(\operatorname{Fun}_{\operatorname{Lex}(\aleph_0)}(\mathcal{C}, \mathcal{D})) \times_{\operatorname{Obj}(\mathcal{D})}$ $\operatorname{Obj}(\mathcal{D}_{1/})$ of Lemma 6.1 is restricted to an equivalence $\operatorname{Obj}(\operatorname{Fun}_{\operatorname{Lex}(\lambda)}(\mathcal{C}_{/x}, \mathcal{D})) \simeq$ $\operatorname{Obj}(\operatorname{Fun}_{\operatorname{Lex}(\lambda)}(\mathcal{C}, \mathcal{D})) \times_{\operatorname{Obj}(\mathcal{D})} \operatorname{Obj}(\mathcal{D}_{1/})$, because $u^* \circ F_{/x}$ preserves λ -small limits whenever $F : \mathcal{C} \to \mathcal{D}$ does. \Box

Construction 6.3. We define $\langle \mathfrak{x} \rangle_{\lambda}$ to be the ∞ -category with λ -small limits freely generated by one object \mathfrak{x} and $\langle \mathfrak{s} : 1 \to \mathfrak{x} \rangle_{\lambda}$ the extension of $\langle \mathfrak{x} \rangle_{\lambda}$ by a global section $\mathfrak{s} : 1 \to \mathfrak{x}$. Let $\iota : \langle \mathfrak{x} \rangle_{\lambda} \to \langle \mathfrak{s} : 1 \to \mathfrak{x} \rangle_{\lambda}$ denote the canonical morphism in $\mathbf{Cat}_{\mathrm{Lex}(\lambda)}$.

Corollary 6.4. Let C be an ∞ -category with λ -small limits and $x \in C$ an object. We regard x and Δ_x as morphisms $\langle \mathfrak{g} \rangle_{\lambda} \to C$ and $\langle \mathfrak{s} : 1 \to \mathfrak{g} \rangle_{\lambda} \to C_{/x}$, respectively, in $\mathbf{Cat}_{\mathrm{Lex}(\lambda)}$. Then

is a pushout in $\operatorname{Cat}_{\operatorname{Lex}(\lambda)}$.

Corollary 6.5. For $\lambda < \alpha$, the pushout functor

 $\iota_{!}: \mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\alpha)_{\langle \mathfrak{x} \rangle_{\lambda}/} \to \mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\alpha)_{\langle \mathfrak{s}: 1 \to \mathfrak{x} \rangle_{\lambda}/}$

along ι preserves α -small limits.

Under the Gabriel-Ulmer duality (Proposition 5.8), the morphism $\iota : \langle \mathfrak{x} \rangle_{\lambda} \to \langle \mathfrak{s} : 1 \to \mathfrak{x} \rangle_{\lambda}$ in $\mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\beta)$ corresponds to the morphism $\pi(\alpha) : \mathbf{S}_{\bullet}(\alpha) \to \mathbf{S}(\alpha)$ in $\mathbf{Pr}^{\mathrm{R}}_{\lambda}(\alpha)$.

Proposition 6.6. The inclusion $\mathbf{Pr}_{\lambda}^{\mathbf{R}}(\alpha) \subset \mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\beta)^{\mathrm{op}}$ takes pushforwards along $\pi(\alpha)$ to those along ι .

Proof. By Corollary 6.5, this follows from Lemma 5.7 and Lemma 6.7 below. \Box

Lemma 6.7. Let $u: A \to B$ be a morphism in a (α, λ) -presentable ∞ -category \mathcal{X} . The morphism u is exponentiable in \mathcal{X}^{op} if and only if the pushout functor $u_1: \mathcal{X}_{A/} \to \mathcal{X}_{B/}$ preserves α -small limits. If this is the case, then $u_*: (\mathcal{X}^{\text{op}})_{/B} \to (\mathcal{X}^{\text{op}})_{/A}$ takes λ -compact objects in $\mathcal{X}_{B/}$ to λ -compact objects in $\mathcal{X}_{A/}$.

Proof. Since u_1 preserves all colimits, this follows from the adjoint functor theorem [11, Corollary 5.5.2.9 (2)].

7 The main theorem

This section is devoted to the proof of the following theorem.

Theorem 7.1. ($\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha), \pi(\alpha)$) is the initial object of $\mathbf{Cat}_{\mathrm{Lex}(\alpha),\mathrm{Univ}(\lambda)}(\beta)$ for $\lambda \leq \alpha < \beta$.

The following criterion is useful.

Proposition 7.2 ([12, Proposition 2.2.2]). If an ∞ -category C has finite limits, then an object of C is initial if and only if its is initial in the homotopy category of C.

 $\operatorname{Cat}_{\operatorname{Lex}(\alpha),\operatorname{Univ}(\lambda)}(\beta)$ has finite limits computed component-wise, and thus for Theorem 7.1 it is enough to construct for every $(\mathcal{C}, u) \in \operatorname{Cat}_{\operatorname{Lex}(\alpha),\operatorname{Univ}(\lambda)}(\beta)$:

- 1. a morphism $!_{(\mathcal{C},u)} : (\mathbf{Pr}^{\mathbf{R}}_{\lambda}(\alpha), \pi(\alpha)) \to (\mathcal{C}, u);$
- 2. an equivalence $!_{(\mathcal{C},u)} \simeq F$ for any morphism $F : (\mathbf{Pr}^{\mathbf{R}}_{\lambda}(\alpha), \pi(\alpha)) \to (\mathcal{C}, u).$

For the existence of a morphism $!_{(\mathcal{C},u)} : (\mathbf{Pr}^{\mathrm{R}}_{\lambda}(\alpha), \pi(\alpha)) \to (\mathcal{C}, u)$, we construct a functor $\mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\beta)^{\mathrm{op}} \to \mathbf{Fun}(\mathcal{C}^{\mathrm{op}}, \mathbf{S}(\beta))$ (Construction 7.3) and show that its restriction to $\mathbf{Pr}^{\mathrm{R}}_{\lambda}(\alpha) \subset \mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\beta)^{\mathrm{op}}$ (Proposition 5.8) factors through the Yoneda embedding (Lemma 7.6).

Construction 7.3. Given an object $(\mathcal{C}, u) \in \mathbf{Cat}_{\mathrm{Lex}(\alpha), \mathrm{Univ}(\lambda)}(\beta)$, we define

 $N_{\mathbf{O}^{u}_{\sigma}}: \mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\beta)^{\mathrm{op}} \to \mathbf{Fun}(\mathcal{C}^{\mathrm{op}}, \mathbf{S}(\beta))$

to be the nerve of $\mathbf{O}^u_{\mathcal{C}}: \mathcal{C} \to \mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\beta)^{\mathrm{op}}$, that is,

$$\mathrm{N}_{\mathbf{O}^{u}_{\mathcal{C}}}(\mathcal{D}) = \mathrm{Map}_{\mathbf{Cat}_{\mathrm{Lex}}(\lambda)}(\beta)(\mathcal{D}, \mathbf{O}^{u}_{\mathcal{C}}(-)).$$

For a morphism $F : (\mathcal{C}, u) \to (\mathcal{D}, v)$ in $\mathbf{Cat}_{\mathrm{Lex}(\alpha), \mathrm{Univ}(\lambda)}(\alpha)$, the natural transformation $\mathbf{O}^{u}_{\mathcal{C}} \Rightarrow \mathbf{O}^{v}_{\mathcal{D}} \circ F$ induces a natural transformation $\mathrm{N}_{\mathbf{O}^{v}_{\mathcal{C}}} \Rightarrow F^{*} \circ \mathrm{N}_{\mathbf{O}^{v}_{\mathcal{D}}}$: $\mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\beta)^{\mathrm{op}} \to \mathbf{Fun}(\mathcal{C}^{\mathrm{op}}, \mathbf{S}(\beta))$. By the adjunction $F_{!} \dashv F^{*}$, we have a natural transformation

$$F_! \circ \mathrm{N}_{\mathbf{O}^u_{\mathcal{C}}} \Rightarrow \mathrm{N}_{\mathbf{O}^v_{\mathcal{D}}} : \mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\beta)^{\mathrm{op}} \to \mathbf{Fun}(\mathcal{D}^{\mathrm{op}}, \mathbf{S}(\beta)).$$
(1)

Construction 7.4. Let $\langle \mathfrak{s} : \mathfrak{x} \to \mathfrak{y} \rangle_{\lambda}$ denote the ∞ -category with λ -small limits freely generated by one morphism $\mathfrak{s} : \mathfrak{x} \to \mathfrak{y}$.

Lemma 7.5.
$$\langle \mathfrak{x} \rangle_{\lambda}$$
 and $\langle \mathfrak{s} : \mathfrak{x} \to \mathfrak{y} \rangle_{\lambda}$ form a strong generator for $\mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\beta)$.

Lemma 7.6. For any $(\mathcal{C}, u) \in \mathbf{Cat}_{\mathrm{Lex}(\alpha), \mathrm{Univ}(\lambda)}(\beta)$, the restriction of $N_{\mathbf{O}_{\mathcal{C}}^{u}}$: $\mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\beta)^{\mathrm{op}} \to \mathbf{Fun}(\mathcal{C}^{\mathrm{op}}, \mathbf{S}(\beta))$ to the α -compact objects factors through the Yoneda embedding $\mathcal{C} \to \mathbf{Fun}(\mathcal{C}^{\mathrm{op}}, \mathbf{S}(\beta))$.

Proof. By Lemma 7.5, it suffices to show the representability of $N_{\mathbf{O}_{\mathcal{C}}^{u}}$ for $\langle \mathfrak{x} \rangle_{\lambda}$ and $\langle \mathfrak{s} : \mathfrak{x} \to \mathfrak{y} \rangle_{\lambda}$, but this is immediate from Proposition 4.12.

Construction 7.7. Recall from Proposition 5.8 that $\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha)^{\mathrm{op}}$ is the full subcategory of $\mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\beta)$ spanned by the α -compact objects. Let $!_{\mathcal{C}} : \mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha) \to \mathcal{C}$ be the functor induced by Lemma 7.6.

Lemma 7.8. For any $(\mathcal{C}, u) \in \mathbf{Cat}_{\mathrm{Lex}(\alpha), \mathrm{Univ}(\lambda)}(\beta)$, the functor $!_{\mathcal{C}} : \mathbf{Pr}^{\mathrm{R}}_{\lambda}(\alpha) \to \mathcal{C}$ is a morphism in $\mathbf{Cat}_{\mathrm{Lex}(\alpha), \mathrm{Univ}(\lambda)}(\beta)$.

Proof. By definition, $!_{\mathcal{C}}$ preserves small limits. $!_{\mathcal{C}}$ sends $\pi(\alpha) : \mathbf{S}_{\bullet}(\alpha) \to \mathbf{S}(\alpha)$ to $u : y \to x$ by Proposition 4.12, because $\pi(\alpha)$ corresponds to the morphism $\iota : \langle \mathfrak{x} \rangle_{\lambda} \to \langle \mathfrak{s} : 1 \to \mathfrak{x} \rangle_{\lambda}$ in $\mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\beta)$ via the Gabriel-Ulmer duality (Proposition 5.8). For the preservation of the pushforward along $\pi(\alpha)$, let $\mathcal{X} \in \mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha)$ be an object and take the corresponding α -compact object $\mathcal{D} \in \mathbf{Cat}_{\mathrm{Lex}(\lambda)}(\beta)$. We have

$$\begin{split} \operatorname{Map}_{\mathcal{C}}(x', !_{\mathcal{C}}(\operatorname{\underline{Fam}}_{\pi(\alpha)}(\mathcal{X}))) & \simeq & \{\operatorname{definition}\} \\ \operatorname{Map}_{\mathbf{Cat}_{\operatorname{Lex}(\lambda)}(\beta)^{\operatorname{op}}}(\mathbf{O}_{\mathcal{C}}^{u}(x'), \operatorname{\underline{Fam}}_{\iota}(\mathcal{D})) \\ & \simeq & \{\operatorname{Corollary 6.4}\} \\ & \sum_{y'\in\operatorname{Obj}(\mathbf{O}_{\mathcal{C}}^{u}(x'))} \operatorname{Map}_{\mathbf{Cat}_{\operatorname{Lex}(\lambda)}(\beta)}(\mathcal{D}, \mathbf{O}_{\mathcal{C}}^{u}(x')_{/y'}) \\ & \simeq & \{\operatorname{Proposition 4.11}\} \\ & \sum_{y'\in\operatorname{Obj}(\mathbf{O}_{\mathcal{C}}^{u}(x'))} \operatorname{Map}_{\mathbf{Cat}_{\operatorname{Lex}(\lambda)}(\beta)}(\mathcal{D}, \mathbf{O}_{\mathcal{C}}^{u}(y')) \\ & \simeq & \{\operatorname{definition}\} \\ & \sum_{v\in\operatorname{Map}_{\mathcal{C}}(x',x)} \operatorname{Map}_{\mathcal{C}}(x' \times_{x} y, !_{\mathcal{C}}(\mathcal{X})) \end{split}$$

for any $x' \in \mathcal{C}$, and thus $!_{\mathcal{C}}(\underline{\operatorname{Fam}}_{\pi(\alpha)}(\mathcal{X})) \simeq \underline{\operatorname{Fam}}_{u}(!_{\mathcal{C}}(\mathcal{X})).$

We have seen the existence of $!_{\mathcal{C}} : (\mathbf{Pr}_{\lambda}^{\mathbf{R}}(\alpha), \pi(\alpha)) \to (\mathcal{C}, u)$. The uniqueness will follow from the functoriality of the construction of $!_{\mathcal{C}}$ (Lemmas 7.9 and 7.10).

Lemma 7.9. $!_{\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha)}$ is the identity.

Proof. By construction.

Lemma 7.10. For any morphism $F : (\mathcal{C}, u) \to (\mathcal{D}, v)$ in $\operatorname{Cat}_{\operatorname{Lex}(\alpha), \operatorname{Univ}(\lambda)}(\beta)$, we have an equivalence

$$F \circ !_{\mathcal{C}} \simeq !_{\mathcal{D}}.$$

Proof. It is enough to show that the canonical natural transformation $F_! \circ N_{\mathbf{O}_{\mathcal{C}}^u} \Rightarrow N_{\mathbf{O}_{\mathcal{D}}^v}$ (Eq. (1)) is invertible at α -compact objects. Since $F_!$, $N_{\mathbf{O}_{\mathcal{C}}^u}$, and $N_{\mathbf{O}_{\mathcal{D}}^v}$ preserve α -small limits, it suffices to show the invertibility at $\langle \mathfrak{x} \rangle_{\lambda}$ and $\langle \mathfrak{s} : \mathfrak{x} \to \mathfrak{y} \rangle_{\lambda}$ by Lemma 7.5, but this is immediate from the construction.

For any morphism $F : (\mathbf{Pr}_{\lambda}^{\mathbf{R}}(\alpha), \pi(\alpha)) \to (\mathcal{C}, u)$ in $\mathbf{Cat}_{\mathrm{Lex}(\alpha), \mathrm{Univ}(\lambda)}(\beta)$, we have an equivalence $!_{\mathcal{C}} \simeq F$ as

$$\begin{array}{l} & \mathcal{C} \\ \simeq & \{\text{Lemma 7.10}\} \\ & F \circ \mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha) \\ \simeq & \{\text{Lemma 7.9}\} \\ & F. \end{array}$$

This completes the proof of Theorem 7.1.

8 Presentable *n*-categories

We consider an *n*-categorical version of Theorem 7.1. For $-1 \le n \le \infty$, by an *n*-category we mean an ∞ -category whose mapping spaces are (n-1)-truncated. For example, 1-categories are ordinary categories, 0-categories are posets, and (-1)-categories are subsingletons.

Construction 8.1. For $-1 \leq n < \infty$, let $n - \mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha) \subset \mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha)$ denote the full subcategory spanned by (α, λ) -presentable *n*-categories. The inclusion has a coreflection, which takes $\mathcal{X} \in \mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha)$ to the full subcategory $\mathcal{X}_{\leq n-1} \subset \mathcal{X}$ spanned by the (n-1)-truncated objects.

Theorem 8.2. $(n-\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha), \pi(\alpha)_{\leq n-1})$ is the initial object in the full subcategory of $\mathbf{Cat}_{\mathrm{Lex}(\alpha),\mathrm{Univ}(\lambda)}(\beta)$ spanned by those objects (\mathcal{C}, u) such that u is (n-1)-truncated, for $-1 \leq n < \infty$ and $\lambda \leq \alpha < \beta$.

Remark 8.3. If a univalent morphism u is k-truncated for $k < \infty$, then u-small morphisms are closed under retracts whenever they are closed under identities, composition, and diagonals. This is because splittings of idempotents on k-truncated objects are finite limits.

Example 8.4. Consider the case when n = 0 and $\lambda = \aleph_0$. A univalent exponentiable monomorphism u is a \aleph_0 -complete universe if and only if u-small morphisms are closed under identities and composition, because the diagonal of a monomorphism is an equivalence. That is, u is a dominance [17]. By the Gabriel-Ulmer duality (Proposition 5.8), 0- $\mathbf{Pr}^{\mathrm{R}}_{\aleph_0}(\alpha)$ is equivalent to $\mathbf{Lat}_{\wedge}(\alpha)^{\mathrm{op}}$, the opposite of the ∞ -category of α -small meet semilattices. Therefore, $\mathbf{Lat}_{\wedge}(\alpha)^{\mathrm{op}}$ is the initial ∞ -category with α -small limits equipped with an exponentiable dominance.

In the rest of this section, we prove Theorem 8.2. We first recall a characterization of truncated objects and morphisms. **Construction 8.5.** Let \mathcal{C} be an ∞ -category with finite limits. We define a functor $\Delta : \mathcal{C}^{\rightarrow} \rightarrow \mathcal{C}^{\rightarrow}$ by $(y \rightarrow x) \mapsto (y \rightarrow y \times_x y)$. Let $\Delta^k : \mathcal{C}^{\rightarrow} \rightarrow \mathcal{C}^{\rightarrow}$ denote the k-fold composition of Δ and let Δ_1^k be the composite $\mathcal{C} \xrightarrow{x \mapsto (x \rightarrow 1)} \mathcal{C}^{\rightarrow} \xrightarrow{\Delta^k} \mathcal{C}^{\rightarrow}$.

Proposition 8.6. Let C be an ∞ -category with finite limits and $k \geq -2$.

- 1. A morphism u in C is k-truncated if and only if $\Delta^{k+2}(u)$ is an equivalence.
- 2. An object x in C is k-truncated if and only if $\Delta_1^{k+2}(x)$ is an equivalence.

Proof. This follows from [11, Lemma 5.5.6.15].

Given a λ -complete universe, we construct a subuniverse of k-truncated objects.

Lemma 8.7. Let $u : y \to x$ be a univalent exponentiable morphism in an ∞ -category C with finite limits. The morphism $\underline{id}_u : x \to \underline{Map}(u)$ corresponding to the identity on y is mono.

Proof. Because $\underline{\mathrm{id}}_u$ represents the monomorphism $\mathrm{Obj}(\mathbf{O}^u_{\mathcal{C}}(x')) \ni y' \mapsto \mathrm{id}_{y'} \in \mathrm{Obj}(\mathbf{O}^u_{\mathcal{C}}(x')^{\rightarrow}).$

Proposition 8.8. Let $(\mathcal{C}, u : y \to x) \in \operatorname{Cat}_{\operatorname{Lex}(\alpha), \operatorname{Univ}(\lambda)}(\beta)$ and $k \leq -2$. There exists a (necessarily) unique λ -complete universe $u_{\leq k} : y_{\leq k} \to x_{\leq k}$ in \mathcal{C} such that the $u_{\leq k}$ -small morphisms are precisely the k-truncated u-small morphisms. Moreover, if $F : (\mathcal{C}, u) \to (\mathcal{D}, v)$ is a morphism in $\operatorname{Cat}_{\operatorname{Lex}(\alpha), \operatorname{Univ}(\lambda)}(\beta)$, then F takes $u_{\leq k}$ to $v_{\leq k}$.

Proof. Since the presheaf $z \mapsto \operatorname{Obj}(\mathbf{O}^u_{\mathcal{C}}(z)^{\rightarrow})$ is representable by $\underline{\operatorname{Map}}(u)$, we have a morphism $\underline{\Delta}^k_1 : x \to \underline{\operatorname{Map}}(u)$ representing Δ^k_1 . Take the pullback

where \underline{id}_u is mono by Lemma 8.7. We define $u_{\leq k} : y_{\leq k} \to x_{\leq k}$ to be the pullback of u along the monomorphism $x_{\leq k} \to x$. Then $u_{\leq k}$ is univalent, and the $u_{\leq k}$ -small morphisms are precisely the k-truncated u-small morphisms by Proposition 8.6. $u_{\leq k}$ is a λ -complete universe because k-truncated morphisms are closed under identities, composition, diagonals, λ -small products, and retracts. The last assertion follows from the construction of $u_{\leq k}$.

Example 8.9. The λ -complete universe $\pi(\alpha)_{\leq n-1} : \mathbf{S}_{\bullet}(\alpha)_{\leq n-1} \to \mathbf{S}(\alpha)_{\leq n-1}$ in $\mathbf{Pr}_{\lambda}^{\mathbf{R}}(\alpha)$ obtained by Proposition 8.8 coincides with the coreflection described in Construction 8.1.

Lemma 8.10. The inclusion n- $\mathbf{Pr}^{\mathbf{R}}_{\lambda}(\alpha) \to \mathbf{Pr}^{\mathbf{R}}_{\lambda}(\alpha)$ defines a morphism

$$(n - \mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha), \pi(\alpha)_{\leq n-1}) \to (\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha), \pi(\alpha)_{\leq n-1})$$

in $\operatorname{Cat}_{\operatorname{Lex}(\alpha),\operatorname{Univ}(\lambda)}(\beta)$.

Proof. Note that the morphism $\pi(\alpha)_{\leq n-1}$ is indeed a λ -complete universe in n- $\mathbf{Pr}_{\lambda}^{\mathbf{R}}(\alpha)$ by Proposition 4.3, since n-categories are closed under limits in $\mathbf{Cat}(\beta)$. Since $\underline{\operatorname{Fam}}_{\pi(\alpha)_{\leq n-1}}$ preserves n-categories, n- $\mathbf{Pr}_{\lambda}^{\mathbf{R}}(\alpha) \subset \mathbf{Pr}_{\lambda}^{\mathbf{R}}(\alpha)$ is closed under $\underline{\operatorname{Fam}}_{\pi(\alpha)_{\leq n-1}}$.

Lemma 8.11. The coreflection $\mathcal{X} \mapsto \mathcal{X}_{\leq n-1}$ defines a morphism

$$(\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha), \pi(\alpha)) \to (n - \mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha), \pi(\alpha)_{\leq n-1})$$

in $\operatorname{Cat}_{\operatorname{Lex}(\alpha),\operatorname{Univ}(\lambda)}(\beta)$.

Proof. Since the coreflection is a right adjoint, it preserves all limits. It remains to show that $\underline{\operatorname{Fam}}_{\pi(\alpha)}(\mathcal{X})_{\leq n-1} \simeq \underline{\operatorname{Fam}}_{\pi(\alpha)\leq n-1}(\mathcal{X}_{\leq n-1})$. Recall that an object of $\underline{\operatorname{Fam}}_{\pi(\alpha)}(\mathcal{X})$ is a pair (I, A) consisting of an object $I \in \mathbf{S}(\alpha)$ and a family of objects $A: I \to \mathcal{X}$. It is (n-1)-truncated if and only if I and A_i for any $i \in I$ are (n-1)-truncated, that is, it belongs to $\underline{\operatorname{Fam}}_{\pi(\alpha)\leq n-1}(\mathcal{X}_{\leq n-1})$.

Proof of Theorem 8.2. Let (\mathcal{C}, u) be an object of $\operatorname{Cat}_{\operatorname{Lex}(\alpha), \operatorname{Univ}(\lambda)}(\beta)$ with u(n-1)-truncated. By Proposition 8.8, the morphism $!_{\mathcal{C}}$ of Construction 7.7 defines a morphism $(\operatorname{Pr}_{\lambda}^{\mathrm{R}}, \pi(\alpha)_{\leq n-1}) \to (\mathcal{C}, u_{\leq n-1})$. Since u is already (n-1)-truncated, $u_{\leq n-1} \simeq u$. We then have a morphism by composition

$$(n-\mathbf{Pr}^{\mathbf{R}}_{\lambda}, \pi(\alpha)_{\leq n-1}) \to (\mathbf{Pr}^{\mathbf{R}}_{\lambda}, \pi(\alpha)_{\leq n-1}) \xrightarrow{!_{\mathcal{C}}} (\mathcal{C}, u).$$

The uniqueness follows because $\mathcal{X} \mapsto \mathcal{X}_{\leq n-1}$ is a coreflection and is a morphism $(\mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha), \pi(\alpha)) \to (n - \mathbf{Pr}_{\lambda}^{\mathrm{R}}(\alpha), \pi(\alpha)_{\leq n-1})$ in $\mathbf{Cat}_{\mathrm{Lex}(\alpha), \mathrm{Univ}(\lambda)}(\beta)$.

References

- N. Arkor and D. McDermott. Higher-order algebraic theories. 2021. URL: https://www.cl.cam.ac.uk/~na412/Higher-order%20algebraic% 20theories.pdf.
- D. Ayala, J. Francis, and N. Rozenblyum. "Factorization homology I: Higher categories". In: Adv. Math. 333 (2018), pp. 1042-1177. DOI: 10. 1016/j.aim.2018.05.031.
- D.-C. Cisinski. Higher Categories and Homotopical Algebra. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2019. DOI: 10.1017/9781108588737.
- M. Fiore and O. Mahmoud. Functorial Semantics of Second-Order Algebraic Theories. 2014. arXiv: 1401.4697v1.

- [5] M. Fiore and O. Mahmoud. "Second-Order Algebraic Theories". In: Mathematical Foundations of Computer Science 2010. Ed. by P. Hliněný and A. Kučera. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 368– 380. DOI: 10.1007/978-3-642-15155-2_33.
- [6] D. Gepner, R. Haugseng, and T. Nikolaus. "Lax Colimits and Free Fibrations in ∞-Categories". In: *Documenta Mathematica* 22 (2017), pp. 1225– 1266. DOI: 10.25537/dm.2017v22.1225-1266.
- [7] D. Gepner and J. Kock. "Univalence in locally cartesian closed ∞-categories". In: Forum Mathematicum 29.3 (Jan. 2017). DOI: 10.1515/forum-2015-0228.
- [8] A. Joyal. Notes on quasi-categories. 2008. URL: http://www.math.uchicago.edu/~may/IMA/Joyal.pdf.
- [9] A. Kaposi and A. Kovács. "A Syntax for Higher Inductive-Inductive Types". In: 3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018). Ed. by H. Kirchner. Vol. 108. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, 20:1–20:18. DOI: 10. 4230/LIPIcs.FSCD.2018.20.
- [10] J. Lurie. Higher Algebra. 2017. URL: http://www.math.harvard.edu/ ~lurie/papers/HA.pdf.
- [11] J. Lurie. Higher Topos Theory. Vol. 170. Annals of Mathematics Studies. Princeton University Press, 2009. URL: https://www.math.ias.edu/ ~lurie/papers/HTT.pdf.
- [12] H. K. Nguyen, G. Raptis, and C. Schrade. "Adjoint functor theorems for ∞-categories". In: Journal of the London Mathematical Society (2019).
 DOI: 10.1112/jlms.12282.
- [13] H. K. Nguyen and T. Uemura. ∞-*type theories*. 2022. arXiv: 2205.00798v1.
- S. B. Niefield. "Cartesianness: topological spaces, uniform spaces, and affine schemes". In: *Journal of Pure and Applied Algebra* 23.2 (1982), pp. 147–167. DOI: 10.1016/0022-4049(82)90004-4.
- [15] N. Rasekh. Complete Segal Objects. 2018. arXiv: 1805.03561v1.
- [16] N. Rasekh. Univalence in Higher Category Theory. 2021. arXiv: 2103. 12762v1.
- [17] G. Rosolini. "Continuity and effectiveness in topoi". PhD thesis. University of Oxford, 1986.
- [18] K. Sojakova. "Higher Inductive Types As Homotopy-Initial Algebras". In: Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL '15. Mumbai, India: ACM, 2015, pp. 31–42. DOI: 10.1145/2676726.2676983.
- [19] G. Stefanich. Presentable (∞, n) -categories. 2020. arXiv: 2011.03035v1.

 T. Uemura. "The universal exponentiable arrow". In: Journal of Pure and Applied Algebra 226.7 (2022), p. 106991. DOI: 10.1016/j.jpaa.2021. 106991.