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1 Introduction

In this note, we prove the following universal property of the (0o, 1)-category of
presentable (n, 1)-categories.

Theorem 1.1. Let —1 < n < co. The (oo, 1)-category of presentable (n,1)-
categories and right adjoint functors between them is the initial (oo, 1)-category
equipped with:

e small limits;
e an exponentiable morphism m: Sy — S

satisfying that 7 is univalent and (n — 1)-truncated and that w-small morphisms
are closed under identities, composition, diagonals, and small products.

We also prove variants parameterized by accessibility rank.

Theorem 1.2. Let —1 < n < oo. For a reqular cardinal A, the (00, 1)-category
of A-presentable (n,1)-categories and right adjoint functors between them pre-
serving \-filtered colimits is the initial (0o, 1)-category equipped with:

o small limits;
e an exponentiable morphism w:Se — S

satisfying that w is univalent and (n — 1)-truncated and that w-small morphisms
are closed under identities, composition, diagonals, A-small products, and re-
tracts.

We prove the case when n = oo in Section[7} The case when n < oo is derived
from it and proved in Section[8] In Section[3] we recall the definition of and basic
facts about exponentiable morphisms. In Section [4, we recall the notion of uni-
valence and the definition of small morphisms with respect to a given univalent
morphism. We review the theory of presentable (0o, 1)-categories in Section
One of the most important theorems is the Gabriel-Ulmer duality, which asserts



that the (0o, 1)-category of A-presentable (oo, 1)-categories is contravariantly
equivalent to the (oo, 1)-category of (0o, 1)-categories with A-small limits and
splittings of idempotents. Our main theorem will follow from the structure of
the latter (0o, 1)-category. A key fact is that a slice of an (oo, 1)-category with
A-small limits is a certain pushout in the (oo, 1)-category of (oo, 1)-categories
with A-small limits, which we review in Section @

Background and related work The main theorem is considered as a variant
of the author’s previous work [20] in the sense that both characterize (oo, 1)-
categories of theories in terms of exponentiable morphisms. The previous result
characterizes the opposite of the category of generalized algebraic theories in
terms of exponentiable morphisms. By the Gabriel-Ulmer duality, presentable
categories are identified with limit theories, and presentable (0o, 1)-categories
are identified with “limit co-theories”. Therefore, the main theorem in this note
characterizes the (oo, 1)-category of limit co-theories in terms of exponentiable
morphisms.

The (00, 1)-category of limit co-theories itself can be regarded as a (large)
limit oco-theory, since it admits small limits. The exponentiability of 7 in the
statement of the main theorem suggests that this limit co-theory is more natural
to think of as a second-order limit oco-theory in the sense that it contains opera-
tors from function types over fibers of 7. This is analogous to the result of Fiore
and Mahmoud [5| 4] that the algebraic theory of clones, which are equivalent
to single-sorted algebraic theories, is simply the second-order algebraic theory
of objects. Arkor and McDermott [1] observe its higher-order variant: the alge-
braic theory of k-th-order single-sorted algebraic theories is the (k -+ 1)-th-order
algebraic theory of objects. Our main theorem could be explained in a suitable
framework of higher-order limit co-theories.

Hoang Kim Nguyen and the author gave in |13, Corollary 5.21] a univer-
sal property of similar kind for the opposite of the (0o, 1)-category of (oo, 1)-
categories with finite limits: it is the initial (oo, 1)-category with small limits
equipped with a univalent exponentiable morphism « such that w-small mor-
phisms are closed under identities, composition, and diagonals. This is different
from Theorem for A = Vg, because finitely presentable (co, 1)-categories are
contravariantly equivalent to (oo, 1)-categories with finite limits and splittings
of idempotents. Nevertheless, a minor modification of the proof could give an al-
ternative, direct proof of [13| Corollary 5.21] (the original proof uses the theory
of co-type theories which are introduced for other purposes).

It is worth pointing out similarity between the main theorem and Kaposi
and Kovécs’s type theory for defining higher inductive types [9]. Their type
theory has a universe, corresponding to our 7 : S — S, and dependent function
types over types from that universe, corresponding to the exponentiability of
our w. This is not a coincidence, because higher inductive types are to be initial
algebras 18] for limit co-theories. Note that the universe of Kaposi and Kovacs’s
type theory is not univalent. Univalence is not necessary for presenting limit
oo-theories but gives a correct notion of equivalence between limit oco-theories:



two limit oo-theories are equivalent when the (0o, 1)-categories of models are
equivalent.

2 Preliminaries

By an oco-category we mean a weak higher category in which all the m-cells
for m > 1 are invertible. For concreteness, we use quasi-categories |11} |8, 3]
as models of co-categories, but all the results are proved model-independently.
For an oo-category C, let Obj(C) denote the space of objects, that is, the largest
oo-groupoid contained in C. For objects x,y € C, let Map,(z,y) denote the map-
ping space from z to y and Eqq(z,y) C Mape(z,y) the subspace of invertible
morphisms.

By a subcategory of C we mean a monomorphism F : C’ — C in the oo-
category of oo-categories. This is equivalent to that F' is faithful and, for any
objects z,y € C’, the induced monomorphism Eq/ (z,y) — Eqe(F(x), F(y)) is
surjective. A subcategory of C is usually specified by a subclass C{ of objects in
C and a subclass C] of morphisms in C between objects in C}) satisfying that C} is
closed under identities and composition and that any equivalence in C between
objects in Cjj belongs to Ci. A full subcategory of C is a fully faithful functor
F:C' — C. It is indeed a subcategory of C as Eqe/ (z,y) ~ Eqe(F(z), F(y)). A
full subcategory of C is usually specified by a subclass of objects in C.

A denotes a regular cardinal. « and 8 denote inaccessible cardinals.

S(«) denotes the oo-category of a-small spaces. We may suppress («) when
size distinction is not important. Cat(a) denotes the oo-category of a-small
oo-categories. For co-categories C and D, let Fun(C, D) denote the co-category
of functors from C to D and natural transformations between them. When
C and D have A-small limits, we define Fungc»)(C,D) C Fun(C,D) to be
the full subcategory spanned by functors preserving A-small limits. We de-
fine Catrex(n)(a) C Cat(a) to be the subcategory whose objects are the oo-
categories with A-small limits and splittings of idempotents and whose mor-
phisms are the functors between them preserving A-small limits. Note that
splittings of idempotents are redundant when A > W; since they are countable
limits.

3 Exponentiable morphisms

We collect basic facts about exponentiable morphisms.

Notation 3.1. Let u : y — x be a morphism in an oo-category C with finite
limits. Let u* : C;, — C/, denote the pullback functor along u, and let w
denote its left adjoint, that is, the postcomposition functor with u. When z is
the terminal object, we write y* and ¥, for u* and wuy, respectively.

Definition 3.2. A morphism u : y — x in an co-category C with finite limits
is ezponentiable if the pullback functor u* : C/, — C,, has a right adjoint u.
called the pushforward along u.



Proposition 3.3. For a morphism u : y — x in an oco-category C with finite
limits, the following are equivalent:

1. u is exponentiable;

2. the functor (- x5 y) : C/p — Cyp has a right adjoint Map (y,-);

3. the composite C, v, Cy 25 C has a right adjoint Fam,,.

Moreover, for any functor F : C — D between oco-categories with finite limits
preserving finite limits and sending u to an exponentiable morphism, F com-
mutes with one of ., Map (y,-), and Fam,, if and only if F' commutes with all
of them. -

Proof. This is well-known in the 1-categorical case [e.g. 14, Corollary 1.2]. We
give a proof to confirm that this is also true in the oco-context. We have the
following commutative diagram.

Cp—2M e,

\/\

Since z1, 1, and wy are left adjoints, and follow. Suppose that
Fam, exists. Then, for any z € C/,, the pushforward u.z € C/, is defined by
the pullback

Uy 2 » Fam,, (%)
B
T — Fam,, (y)

where the bottom morphism is the unit for Fam,, at id, € C/,. The last assertion
is clear from the construction of u,, Mapx(y, _), and Fam,, from each other. [

Ezample 3.4. The forgetful functor m(a) : Se(a) — S(a) from the oco-category
of a-small pointed spaces to the co-category of a-small spaces is exponentiable
in Cat(8) where a < (. Indeed, it is a left fibration and then [2, Corollary
A.22] applies. More concretely, Fam,,)(C) for C € Cat(3) is the so-called
family fibration and obtained by the Grothendieck construction for the functor

S°P(a) 3 A+ C* € Cat(p).

Proposition 3.5. Let

~
g

U

y —y
|
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be a pullback in an oo-category C with finite limits. If u is exponentiable, then
so is u'. Moreover, for a functor F : C — D between oco-categories with finite
limits preserving finite limits and sending u to an exponentiable morphism, if F
commutes with u,, then it commutes with u',.

Proof. This is also well-known in the 1-categorical case [e.g. 14} Corollary 1.4],
and the proof also works in the oco-context. Indeed, we have the following
commutative diagram

C/w/ *Hu )* C/y/

oL N
Cyy m C

Cla

u*

and v has the right adjoint v*, so Fam,, is constructed as v* o Fam,. The last
assertion is clear from this construction of Fam,,,. O

4 Complete universes

We think of a morphism w : y — z in an oo-category with finite limits as a
universe. We introduce some concepts around universes.
We recall the notion of univalence (7} [16].

Definition 4.1. A morphism u : y — x in an co-category with finite limits C
is univalent if, for any object z € C, the map of spaces

Map¢(z,z) 3 v = vy € Obj(C).)
is mono.

Ezample 4.2. w(«a) : Se(a) = S(«) is univalent in Cat(8). This is because it
classifies left fibrations with a-small fibers in the sense that, for any C € Cat(f),
the functor

Fun(C,S(a)) > F' — F*S(a) € Cat(8) ¢
is fully faithful and its image is the class of left fibrations over C with a-small
fibers.

Proposition 4.3. Let C be an oo-category with finite limits and C' C C a
subcategory closed under finite limits. If a morphismu :y — x in C' is univalent
in C, then it is univalent in C'.

Proof. Let z € C' be an object. Since C' C C is closed under finite limits, we
have the following commutative diagram.

Mape: (z, x) Binii N Obj(C),)

l I

Map¢ (2, ) ———— Obj(C,.).

v—=v¥y



The vertical maps are mono since C’ — C is mono, and the bottom map is mono
since u is univalent. Hence, the top map is mono as well. O

A univalent morphism induces an indexed oo-category consisting of small
morphisms.

Definition 4.4. Let u : y — x be a univalent morphism in an co-category C
with finite limits. We say a morphism v’ : ¢y’ — x’ is u-small if there exists a
pullback

Yy ry
_
'U./J/ J/’U‘
z/ > .

Note that the univalence of u implies that such a pullback is unique.

Construction 4.5. For a univalent morphism u : y — = in an co-category C
with finite limits, let Og : C°® — Cat be the functor sending z € C to the full
subcategory of C/, spanned by the u-small morphisms. The action of morphisms
is given by pullback. For a functor F' : C — D preserving finite limits, we have

a canonical natural transformation Og(z) — Og(u)(F(z)) for z € C.
We consider when OY(z) has certain limits.

Definition 4.6. Let C € Catycn). By a A-complete universe in C we mean
a univalent exponentiable morphism u in C such that w-small morphisms are
closed under identities, composition, diagonals, A-small products, and retracts.
Remark 4.7. Closure under retracts is redundant when A > N.

Remark 4.8. Closure under A-small products is redundant when A = V.

Ezample 4.9. 7(a) : Se(a) = S(a) is an a-complete universe in Cat(f), since
left fibrations with a-small fibers are closed under identities, composition, diag-
onals, a-small products, and retracts.

Proposition 4.10. Let u :y — x be a A\-complete universe in C € Catyey(y)-
The functor Og : C°P — Cat factors through Catyex(y)-

Proof. By the closure properties of u-small morphisms. O

Proposition 4.11. Let u :y — x be a A\-complete universe in C € Catyey(y)-
For morphisms v 1y — 2’ and w: 2’ — v/, if v is u-small, then w is u-small if
and only if vow is.

Proof. Because u-small morphisms are closed under pullbacks, composition, and
diagonals. O

O¢ is representable in the following sense.

Proposition 4.12. Let u:y — x be a A-complete universe in C € Catyey(y)-



1. Ob(OK(2)) ~ Mape (2, 2):
2. Obj(O¢(2)ia, /) =~ Mapc(2,9);

3. The presheaf z — Obj(O¢(z)™") is representable. The representing object
is denoted by Map(u).

Proof. The first and second equivalences are immediate by construction. For
the last, we define Map(u) € C/5x, to be Mapmm(y x x,x X y). Note that, by
Proposition the morphism u X z : y X * — = X x is exponentiable. O

Remark 4.13. Map(u) is part of the complete Segal object associated to u [15].

We introduce an oo-category of oco-categories equipped with a A-complete
universe.

Definition 4.14. For A < a < f, we define Catycy(a),univ(r)(B) to be the
oo-category whose objects are the S-small co-categories with a-small limits and
equipped with a A-complete universe and whose morphisms are the functors
between them preserving a-small limits, specified A-complete universes, and
pushforwards along specified A-complete universes.

5 Presentable co-categories

We recall the definition and basic properties of presentable co-categories |11
Section 5.5]. We also find a A-complete universe in an co-category of presentable
oo-categories (Proposition [5.3). The Gabriel-Ulmer duality is rephrased using
that universe (Proposition [5.8)).

Definition 5.1. For A < «, we say an oo-category X is («, A)-presentable if it
is equivalent to Ind$(C) for some a-small co-category C with A-small colimits,
where Indy is the completion under a-small A-filtered colimits. For convention,
we say X is («, «)-presentable if it is (o, A)-presentable for some A < a. By def-
inition, any («, \)-presentable co-category is S-small for A < a < 5. We define
Pri¥(a) c Cat(B) to be the subcategory spanned by the (a, \)-presentable co-
categories and right adjoint functors between them preserving a-small A-filtered
colimits.

Proposition 5.2 (|11, Proposition 5.5.7.6]). Pry(a) C Cat(3) is closed under
a-small limits for A < a < .

Proposition 5.3. For A < «, the functor n(a) : Se(a) — S(a) belongs to
Pri¥(a) and is a \-complete universe.

Proposition [5.3]is split into a few lemmas.

Lemma 5.4. 7(a) belongs to Pri(a) and is univalent.



Proof. Since So() ~ S(a),, it belongs to Pri¥(a) because (a,\)-presentable
oo-categories are closed under coslice |11} Proposition 5.5.3.11]. The projection
7(a) is in Pri¥(a) as it has the left adjoint (_41) and preserves filtered colimits.
The univalence of 7(«) follows from Propositions and and Example

O

Lemma 5.5. For a morphismp:)Y — X in Prli‘(oz), the following are equiva-
lent:

1. p is w(a)-small in Pry(a);

2. the functor p is a left fibration representable by some A-compact object of
X;

3. the functor p is a left fibration and preserves A-compact objects.

Proof. Suppose that p is the pullback of 7(a) along a morphism F :
X — S(«). By definition, F' has a left adjoint and preserves a-small A-filtered
colimits, and thus F' is representable by some A-compact object of X.

If p is representable by a A-compact object A € X, then it is the
pullback of 7(«) along the functor Mapy (4, ) : X — S(«), which belongs to
Pri¥(a).

The left fibration cod : X4, — X preserves A-compact objects
whenever A € X' is A-compact.

If p is a left fibration, then it is representable because ) has an initial
object. If cod : X4, — X preserves A\-compact objects, then A is A-compact as
it is the image of the initial object by cod. U

Lemma 5.6. w(a)-small morphisms in Pri(a) are closed under identities,
composition, diagonals, A\-small products, and retracts.

Proof. The closure under identities and composition is immediate from Lemmal|5.5
For diagonals, it suffices to show that Xy, — X4, xx X4, =~ Xapay is w(a)-
small whenever A € X is A-compact, but this is true because the codiagonal
A+ A — Ais a \-compact object of X4, 4,. For A-small products (retracts),
use the fact that A-compact objects are closed under A-small coproducts (re-
tracts). O

Proof of Proposition[5.3. Tt remains to show that Pri(a) C Cat(8) is closed
under Fam, ). For a (o, A)-presentable co-category X', the cartesian fibration
Fam_ () (X) — S(a) is a presentable fibration in the sense of Gepner, Haugseng,
and Nikolaus [6]. It then follows that Fam, ,)(X) — S(«) belongs to Pri¥(a) [6,
Theorem 10.3]. Note that |6, Theorem 10.3] does not mention the accessibility
rank, but we can calculate it from the proof of that theorem. It is straightfor-
ward to see that the unit and counit for Fam_ ) belong to Pri(a), and thus

Pri¥(a) C Cat(B) is closed under Fam O

m(a):

By Propositionsand (Pri(a), m(a)) is an object of Catypcx(a),Univ(r) (B)-
We state a version of the Gabriel-Ulmer duality (Proposition [5.8).



Lemma 5.7. Catycy)(3) is (3, a)-presentable for A < a < 3.

Proof. See [10, Lemma 4.8.4.2]. One can also construct Catycy(y)(3) directly
in Prg(b’) using Proposition O

Proposition 5.8. For A < a < 3, the functor

Opi%ay : PrA(@) = Catiex(8)
18 fully faithful, and its image is the class of a-compact objects. Moreover, the

inverse of the induced equivalence takes a c-compact object C € Catycx(r)(8) to
ElnLex(A) (C, S(Oé))

Proof. By Lemma O;i(;)(a)()( ) is equivalent to the opposite of the full
subcategory of X spanned b} the A-compact objects. The claim then follows
from |11, Proposition 5.5.7.10] when A < « and from |19, Proposition 5.1.4]
when A = «. Note that in |11, Proposition 5.5.7.10], the inverse is given
by Catpexny(a) > C — Ind{(CP) € Pri¥(a)°, but this is equivalent to
Fung ) (-, S(a)) by |11} Corollary 5.3.5.4], so the last assertion follows when
A < a. When A = a, the last assertion is because C ~ Funy,cy(q)(C?, S(a))
when C is (o, a)-presentable by |11, Proposition 5.5.2.2]. O

6 Slices of complete oco-categories

Our main theorem is the initiality of (PrX(a),n(a)) in Catycx(a), Univ(r) (B)
(Theorem . By Proposition Pri¥(a) is embedded into Catrcx(r)(8)°P,
so it is good to study Catpecx)(8). The most important tool is the following
universal property of slices.

Lemma 6.1 ([13, Proposition 3.25]). Let C be an oo-category with finite limits
and x € C an object. For any co-category D with finite limits, the square

Ob.] (F\unLex(Ng) (C/x) D)) % ObJ (Dl/)

(oz™ )l lCOd

Obj(Fungey(x,)(C, D)) —-— Obj(D)

18 a pullback, where we regard the diagonal A, : x — xXx as a global section 1 —
x*x inC,y. Moreover, the inverse of the induced map Obj(Fung,exmy)(C/a, D)) —
Obj(Fung,ex(x,) (C, D)) X obj(p) Obj(Dy /) sends an object (F,u) to the composite

F/y uw*



Proposition 6.2. Let C be an oco-category with A-small limits and x € C an
object. For any oo-category D with A-small limits, the square

eva,

Ob.] (F‘unLex()\) (C/wv D)) — Ob.] (Dl/)

(—oz™ )J J{cod

Obj(Fungen) (C, D)) —— Obj(D)

s a pullback.

Proof. The equivalence Obj(Fung,exxy)(C/z, D)) = Obj(Fungex,)(C, D)) X obj(p)
Obj(Dy/) of Lemmais restricted to an equivalence Obj(Fung,ex(x)(C/z, D)) =~
Obj(Funy,cx(1)(C, D)) Xobj(p) Obj(D1/), because u* o Fy, preserves A-small lim-
its whenever F': C — D does. O

Construction 6.3. We define (r), to be the oo-category with A-small limits
freely generated by one object r and (s : 1 — 1)) the extension of (r), by a
global section s : 1 — ¢. Let ¢ : (r)x — (s : 1 — r)» denote the canonical
morphism in Caty,ey(y)-

Corollary 6.4. Let C be an oo-category with \-small limits and x € C an
object. We regard x and A, as morphisms (r)x — C and (s : 1 — g)x — C/q,
respectively, in Catyex(n). Then

(thhy —— C

N

<§:1_>x>)\Tw>C/w

is a pushout in Catyey(y)- ]

Corollary 6.5. For \ < «, the pushout functor

bt Catrex(n) (@) (r),/ = Catrex(n) (@) (s:151)5/
along 1 preserves a-small limits. [
Under the Gabriel-Ulmer duality (Proposition, the morphism ¢ : (r), —
(5:1 = 1)x in Catpexr)(B) corresponds to the morphism 7(a) : Se(a) — S(a)
in Pry(a).
Proposition 6.6. The inclusion Pr?(a) C Catyex(x)(B)°P takes pushforwards
along m(a) to those along ¢.

Proof. By Corollary[6.5] this follows from Lemmal5.7and Lemmal[6.7|below. [

Lemma 6.7. Let u: A — B be a morphism in a (o, \)-presentable co-category
X. The morphism u is exponentiable in X°P if and only if the pushout func-
tor uy : Xy, — Xp, preserves a-small limits. If this is the case, then u, :
(XP)p — (X°P),a takes A-compact objects in Xp, to A-compact objects in
Xy

10



Proof. Since uy preserves all colimits, this follows from the adjoint functor the-
orem [11, Corollary 5.5.2.9 (2)]. O

7 The main theorem

This section is devoted to the proof of the following theorem.

Theorem 7.1. (Pri(a),w(a)) is the initial object of Catycx(a), Univ(r)(B) for
A< a<p.

The following criterion is useful.

Proposition 7.2 ([12, Proposition 2.2.2]). If an co-category C has finite limits,
then an object of C is initial if and only if its is initial in the homotopy category

of C.

Catycy(a),Univ(x) (B) has finite limits computed component-wise, and thus for
Theorem [7.1]it is enough to construct for every (C,u) € Catpex(a),univ(r)(8):

1. a morphism !¢, : (Pri¥(a), m(a)) = (C,u);
2. an equivalence !¢,y ~ F' for any morphism F : (Pri¥(a),m(a)) = (C,u).

For the existence of a morphism !(¢ ) : (Pri¥(a),m(a)) = (C,u), we construct a

functor Catyeyx(r)(3)°? — Fun(C°?,S(3)) (Construction [7.3)) and show that its

restriction to Prl))\‘(a) C Catpex(n) ()P (Proposition ) factors through the
Yoneda embedding (Lemma [7.6).

Construction 7.3. Given an object (C,u) € Catyex(a),univ(r)(3), we define
Nog : Catpey (8) — Fun(C,S(3))
to be the nerve of Og : C — Caty ey (x)(5)°P, that is,
Noy (D) = Mapcag, ., (8) (D> O¢(-)-

For a morphism F': (C,u) — (D,v) in Caty,cx(a),univ(r) (), the natural trans-
formation Og = O} o F' induces a natural transformation Nog = [F*o NovD :
Catycx())(8)°P — Fun(C°?,S(3)). By the adjunction Fi 4 F*, we have a natu-
ral transformation

Fo NOE = NO% : Cathx()\) (B)Op - F\un(DOP, S(ﬂ)) (1)

Construction 7.4. Let (s : r — y)) denote the co-category with A-small limits
freely generated by one morphism s : ¢t — 1.

Lemma 7.5. (r)x and (s : r — v)x form a strong generator for Catycgx)(5).
O

11



Lemma 7.6. For any (C,u) € Catrex(a),univ(n)(B), the restriction of Noy :
Catycx(r)(8)°P — Fun(C°,S(3)) to the a-compact objects factors through the
Yoneda embedding C — Fun(C°P,S(3)).

Proof. By Lemma it suffices to show the representability of Noy for (r)a
and (s : r — p)», but this is immediate from Proposition O

Construction 7.7. Recall from Proposition |5.8| that Pry(a)°P is the full sub-
category of Catrcy(y)(3) spanned by the a-compact objects. Let !¢ : Pri‘(a) —
C be the functor induced by Lemma [7.6]

Lemma 7.8. For any (C,u) € Catyex(a),univ(r)(B), the functor !¢ : Pri‘(a) —
C is a morphism in Catyex(a),univin)(B)-

Proof. By definition, !¢ preserves small limits. !¢ sends 7(a) : Se(a) — S(a)
to u : y — a by Proposition because m(a) corresponds to the morphism
t: (@) = (5:1 = 1)\ in Catyeer)(B) via the Gabriel-Ulmer duality (Proposi-
tion . For the preservation of the pushforward along w(a), let X' € Prlf\‘(a)
be an object and take the corresponding a-compact object D € Catycx(r)(5)-
We have

Mape (2, ¢ (Fam, (o) (X)))
{definition}

MaDGiag, .. v (310 (O (). Fan, (D))
{Corollary

> MaPcaty .. (8) (P> O () /y7)
¥/ €0bj(0 (a"))

{Proposition [4.11]}
Z MapCatLex(A) ([‘3) (D’ Og (yl))
¥/ €0bj(Ok(2"))
{definition}

D> Mape(a! X, y,le(X))
vEMape (z/,x)

1R

12

12

12

for any 2’ € C, and thus lc(Fam, (X)) ~ Fam, (!c(X)). O

We have seen the existence of !¢ : (Pry(a),m(a)) = (C,u). The uniqueness
will follow from the functoriality of the construction of !¢ (Lemmas[7.9]and [7.10]).

Lemma 7.9. !Prg(a) is the identity.
Proof. By construction. O

Lemma 7.10. For any morphism F : (C,u) — (D, v) in Catyex(a),univ(y)(5),
we have an equivalence
Fo !C >~ !’D-

12



Proof. Tt is enough to show that the canonical natural transformation Fy o
Nox = Noy, (Eq. (1)) is invertible at a-compact objects. Since F, Nogy,
and Noy preserve a-small limits, it suffices to show the invertibility at (r), and
(s :r — v)x by Lemma but this is immediate from the construction. O

For any morphism F : (PI‘E}(OZ),’/T(CE)) — (C,u) in Catyex(a),univin) (B), we
have an equivalence !¢ ~ F' as

|

‘e
{Lemma [7.10]}

Folpm(a

{Lemma
F.

1

12

This completes the proof of Theorem

8 Presentable n-categories

We consider an n-categorical version of Theorem For —1 <n < o0, by an
n-category we mean an co-category whose mapping spaces are (n—1)-truncated.
For example, 1-categories are ordinary categories, O-categories are posets, and
(—1)-categories are subsingletons.

Construction 8.1. For —1 < n < oo, let n-Pri(a) ¢ PrY(a) denote the
full subcategory spanned by («, A)-presentable n-categories. The inclusion has
a coreflection, which takes X € Pr?(a) to the full subcategory X<,—1 C X
spanned by the (n — 1)-truncated objects.

Theorem 8.2. (n-Pry (), m(a)<n_1) is the initial object in the full subcategory
of Catyex(a),univ(r)(B) spanned by those objects (C,u) such that u is (n — 1)-
truncated, for —1 <n < oo and A < a < f.

Remark 8.3. If a univalent morphism u is k-truncated for k < oo, then u-small
morphisms are closed under retracts whenever they are closed under identities,
composition, and diagonals. This is because splittings of idempotents on k-
truncated objects are finite limits.

Example 8.4. Consider the case when n = 0 and A = Yy. A univalent expo-
nentiable monomorphism u is a Ng-complete universe if and only if u-small
morphisms are closed under identities and composition, because the diago-
nal of a monomorphism is an equivalence. That is, u is a dominance [17].
By the Gabriel-Ulmer duality (Proposition , O—Pr&o(a) is equivalent to
Lat, («)°P, the opposite of the co-category of a-small meet semilattices. There-
fore, Lat, ()P is the initial co-category with a-small limits equipped with an
exponentiable dominance.

In the rest of this section, we prove Theorem We first recall a charac-
terization of truncated objects and morphisms.

13



Construction 8.5. Let C be an oo-category with finite limits. We define a
functor A : C* = C? by (y = 2) = (y = y X, y). Let A¥ : C™ — C~ denote

xT x k
the k-fold composition of A and let A¥ be the composite C M) ¢ 2

c.
Proposition 8.6. Let C be an oco-category with finite limits and k > —2.
1. A morphism u in C is k-truncated if and only if A¥*2(u) is an equivalence.
2. An object x in C is k-truncated if and only if A’f“(m) is an equivalence.
Proof. This follows from [11, Lemma 5.5.6.15]. O

Given a A-complete universe, we construct a subuniverse of k-truncated ob-
jects.

Lemma 8.7. Let v : y — x be a univalent exponentiable morphism in an oco-
category C with finite limits. The morphism id,, : * — Map(u) corresponding to
the identity on y is mono.

Proof. Because id, represents the monomorphism Obj(O¥%(z’)) 3 ¢y — idy €
ODj(0(a")~). .

Proposition 8.8. Let (C,u : y — x) € Catyex(a),univ(n)(B) and k < —2. There
exists a (necessarily) unique A-complete universe u<y : y<ip — <k in C such
that the u<y-small morphisms are precisely the k-truncated w-small morphisms.
Moreover, if F': (C,u) — (D,v) is a morphism in Catyex(a)univ(r)(3), then F
takes u<y to v<j.

Proof. Since the presheaf z — Obj(Og(z)™") is representable by Map(u), we
have a morphism A}f : x — Map(u) representing A¥. Take the pullback

T<k y T

o _I
\[Eu

z F Map(u),

where id,, is mono by Lemma We define u<y @ y<r — z<j to be the
pullback of u along the monomorphism x<; — . Then u<yj is univalent, and
the u<j-small morphisms are precisely the k-truncated u-small morphisms by
Proposition @ u<y, is a A-complete universe because k-truncated morphisms
are closed under identities, composition, diagonals, A-small products, and re-
tracts. The last assertion follows from the construction of u<y. O

Ezample 8.9. The A-complete universe m(a)<p—1 : Se(®)<n—1 = S(®)<p—_1 in
Prl/\{(a) obtained by Proposition coincides with the coreflection described in
Construction

14



Lemma 8.10. The inclusion n—PrI;L(a) — Prii(a) defines a morphism

(n-Pry(a), () <n-1) = (Pry(a), m(a)<n-1)

m CatLex(a) ,Univ(X\) (6) .

Proof. Note that the morphism m(a)<,—1 is indeed a A-complete universe in
n-Pri () by Proposition since n-categories are closed under limits in Cat(5).
Since Fam | breserves n-categories, n-Pri¥(a) c Pri(a) is closed under
Fam O

() <n—

m(o)<n—1"

Lemma 8.11. The coreflection X — X<,_1 defines a morphism
(Pr}(a),m(a)) = (n-Pry(a), m(@)<n-1)

in Catyex(a),Univ()) (B).

Proof. Since the coreflection is a right adjoint, it preserves all limits. It remains
to show that @w(a)(X)§7z—1 ~ mn(a)<n,1(xﬁn—l)~ Recall that an object
of Fam_ (&) is a pair (1, A) consisting of an object I € S(a) and a family of
objects A: I — X. It is (n — 1)-truncated if and only if I and A; for any i € T
are (n — 1)-truncated, that is, it belongs to Fam, ) _  (X¥<n—1). O

Proof of Theorem[8.3. Let (C,u) be an object of Catyex(a),univ(r)(B) With u
(n — 1)-truncated. By Proposition the morphism !¢ of Construction
defines a morphism (Pry, 7(a)<p_1) — (C,u<pn_1). Since u is already (n — 1)-
truncated, u<,—1 ~ u. We then have a morphism by composition

(n-Prf, w(a)<no1) = (PrY, m(a)<n1) % (C.u).

The uniqueness follows because X — X<,,_; is a coreflection and is a morphism
(Prlf(a), (a)) — (n—PrI;\‘(a),ﬂ(a)Sn,l) in Catycx(a),Univ(r)(B)- O
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