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1 Introduction

In this note, we prove the following universal property of the (∞, 1)-category of
presentable (n, 1)-categories.

Theorem 1.1. Let −1 ≤ n ≤ ∞. The (∞, 1)-category of presentable (n, 1)-
categories and right adjoint functors between them is the initial (∞, 1)-category
equipped with:

• small limits;

• an exponentiable morphism π : S• → S

satisfying that π is univalent and (n−1)-truncated and that π-small morphisms
are closed under identities, composition, diagonals, and small products.

We also prove variants parameterized by accessibility rank.

Theorem 1.2. Let −1 ≤ n ≤ ∞. For a regular cardinal λ, the (∞, 1)-category
of λ-presentable (n, 1)-categories and right adjoint functors between them pre-
serving λ-filtered colimits is the initial (∞, 1)-category equipped with:

• small limits;

• an exponentiable morphism π : S• → S

satisfying that π is univalent and (n−1)-truncated and that π-small morphisms
are closed under identities, composition, diagonals, λ-small products, and re-
tracts.

We prove the case when n = ∞ in Section 7. The case when n < ∞ is derived
from it and proved in Section 8. In Section 3, we recall the definition of and basic
facts about exponentiable morphisms. In Section 4, we recall the notion of uni-
valence and the definition of small morphisms with respect to a given univalent
morphism. We review the theory of presentable (∞, 1)-categories in Section 5.
One of the most important theorems is the Gabriel-Ulmer duality, which asserts
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that the (∞, 1)-category of λ-presentable (∞, 1)-categories is contravariantly
equivalent to the (∞, 1)-category of (∞, 1)-categories with λ-small limits and
splittings of idempotents. Our main theorem will follow from the structure of
the latter (∞, 1)-category. A key fact is that a slice of an (∞, 1)-category with
λ-small limits is a certain pushout in the (∞, 1)-category of (∞, 1)-categories
with λ-small limits, which we review in Section 6.

Background and related work The main theorem is considered as a variant
of the author’s previous work [20] in the sense that both characterize (∞, 1)-
categories of theories in terms of exponentiable morphisms. The previous result
characterizes the opposite of the category of generalized algebraic theories in
terms of exponentiable morphisms. By the Gabriel-Ulmer duality, presentable
categories are identified with limit theories, and presentable (∞, 1)-categories
are identified with “limit ∞-theories”. Therefore, the main theorem in this note
characterizes the (∞, 1)-category of limit ∞-theories in terms of exponentiable
morphisms.

The (∞, 1)-category of limit ∞-theories itself can be regarded as a (large)
limit ∞-theory, since it admits small limits. The exponentiability of π in the
statement of the main theorem suggests that this limit ∞-theory is more natural
to think of as a second-order limit ∞-theory in the sense that it contains opera-
tors from function types over fibers of π. This is analogous to the result of Fiore
and Mahmoud [5, 4] that the algebraic theory of clones, which are equivalent
to single-sorted algebraic theories, is simply the second-order algebraic theory
of objects. Arkor and McDermott [1] observe its higher-order variant: the alge-
braic theory of k-th-order single-sorted algebraic theories is the (k+1)-th-order
algebraic theory of objects. Our main theorem could be explained in a suitable
framework of higher-order limit ∞-theories.

Hoang Kim Nguyen and the author gave in [13, Corollary 5.21] a univer-
sal property of similar kind for the opposite of the (∞, 1)-category of (∞, 1)-
categories with finite limits: it is the initial (∞, 1)-category with small limits
equipped with a univalent exponentiable morphism u such that u-small mor-
phisms are closed under identities, composition, and diagonals. This is different
from Theorem 1.2 for λ = ℵ0, because finitely presentable (∞, 1)-categories are
contravariantly equivalent to (∞, 1)-categories with finite limits and splittings
of idempotents. Nevertheless, a minor modification of the proof could give an al-
ternative, direct proof of [13, Corollary 5.21] (the original proof uses the theory
of ∞-type theories which are introduced for other purposes).

It is worth pointing out similarity between the main theorem and Kaposi
and Kovács’s type theory for defining higher inductive types [9]. Their type
theory has a universe, corresponding to our π : S• → S, and dependent function
types over types from that universe, corresponding to the exponentiability of
our π. This is not a coincidence, because higher inductive types are to be initial
algebras [18] for limit∞-theories. Note that the universe of Kaposi and Kovács’s
type theory is not univalent. Univalence is not necessary for presenting limit
∞-theories but gives a correct notion of equivalence between limit ∞-theories:
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two limit ∞-theories are equivalent when the (∞, 1)-categories of models are
equivalent.

2 Preliminaries

By an ∞-category we mean a weak higher category in which all the m-cells
for m > 1 are invertible. For concreteness, we use quasi-categories [11, 8, 3]
as models of ∞-categories, but all the results are proved model-independently.
For an ∞-category C, let Obj(C) denote the space of objects, that is, the largest
∞-groupoid contained in C. For objects x, y ∈ C, let MapC(x, y) denote the map-
ping space from x to y and EqC(x, y) ⊂ MapC(x, y) the subspace of invertible
morphisms.

By a subcategory of C we mean a monomorphism F : C′ → C in the ∞-
category of ∞-categories. This is equivalent to that F is faithful and, for any
objects x, y ∈ C′, the induced monomorphism EqC′(x, y) → EqC(F (x), F (y)) is
surjective. A subcategory of C is usually specified by a subclass C′

0 of objects in
C and a subclass C′

1 of morphisms in C between objects in C′
0 satisfying that C′

1 is
closed under identities and composition and that any equivalence in C between
objects in C′

0 belongs to C′
1. A full subcategory of C is a fully faithful functor

F : C′ → C. It is indeed a subcategory of C as EqC′(x, y) ≃ EqC(F (x), F (y)). A
full subcategory of C is usually specified by a subclass of objects in C.

λ denotes a regular cardinal. α and β denote inaccessible cardinals.
S(α) denotes the ∞-category of α-small spaces. We may suppress (α) when

size distinction is not important. Cat(α) denotes the ∞-category of α-small
∞-categories. For ∞-categories C and D, let Fun(C,D) denote the ∞-category
of functors from C to D and natural transformations between them. When
C and D have λ-small limits, we define FunLex(λ)(C,D) ⊂ Fun(C,D) to be
the full subcategory spanned by functors preserving λ-small limits. We de-
fine CatLex(λ)(α) ⊂ Cat(α) to be the subcategory whose objects are the ∞-
categories with λ-small limits and splittings of idempotents and whose mor-
phisms are the functors between them preserving λ-small limits. Note that
splittings of idempotents are redundant when λ > ℵ0 since they are countable
limits.

3 Exponentiable morphisms

We collect basic facts about exponentiable morphisms.

Notation 3.1. Let u : y → x be a morphism in an ∞-category C with finite
limits. Let u∗ : C/x → C/y denote the pullback functor along u, and let u!

denote its left adjoint, that is, the postcomposition functor with u. When x is
the terminal object, we write y∗ and y! for u

∗ and u!, respectively.

Definition 3.2. A morphism u : y → x in an ∞-category C with finite limits
is exponentiable if the pullback functor u∗ : C/x → C/y has a right adjoint u∗
called the pushforward along u.
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Proposition 3.3. For a morphism u : y → x in an ∞-category C with finite
limits, the following are equivalent:

1. u is exponentiable;

2. the functor ( ×x y) : C/x → C/x has a right adjoint Map
x
(y, );

3. the composite C/x
u∗

−→ C/y
y!−→ C has a right adjoint Famu.

Moreover, for any functor F : C → D between ∞-categories with finite limits
preserving finite limits and sending u to an exponentiable morphism, F com-
mutes with one of u∗, Map

x
(y, ), and Famu if and only if F commutes with all

of them.

Proof. This is well-known in the 1-categorical case [e.g. 14, Corollary 1.2]. We
give a proof to confirm that this is also true in the ∞-context. We have the
following commutative diagram.

C/x C/x

C/y C

( ×xy)

u∗
x!

y!

u!

Since x!, y!, and u! are left adjoints, 1 ⇒ 2 and 2 ⇒ 3 follow. Suppose that
Famu exists. Then, for any z ∈ C/y, the pushforward u∗z ∈ C/x is defined by
the pullback

u∗z Famu(z)

x Famu(y)

⌟

where the bottom morphism is the unit for Famu at idx ∈ C/x. The last assertion
is clear from the construction of u∗, Map

x
(y, ), and Famu from each other.

Example 3.4. The forgetful functor π(α) : S•(α) → S(α) from the ∞-category
of α-small pointed spaces to the ∞-category of α-small spaces is exponentiable
in Cat(β) where α < β. Indeed, it is a left fibration and then [2, Corollary
A.22] applies. More concretely, Famπ(α)(C) for C ∈ Cat(β) is the so-called
family fibration and obtained by the Grothendieck construction for the functor

Sop(α) ∋ A 7→ CA ∈ Cat(β).

Proposition 3.5. Let

y′ y

x′ x

w

u′
⌟

u

v
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be a pullback in an ∞-category C with finite limits. If u is exponentiable, then
so is u′. Moreover, for a functor F : C → D between ∞-categories with finite
limits preserving finite limits and sending u to an exponentiable morphism, if F
commutes with u∗, then it commutes with u′

∗.

Proof. This is also well-known in the 1-categorical case [e.g. 14, Corollary 1.4],
and the proof also works in the ∞-context. Indeed, we have the following
commutative diagram

C/x′ C/y′

C/x C/y C

(u′)∗

v!
y′
!w!

u∗ y!

and v! has the right adjoint v∗, so Famu′ is constructed as v∗ ◦ Famu. The last
assertion is clear from this construction of Famu′ .

4 Complete universes

We think of a morphism u : y → x in an ∞-category with finite limits as a
universe. We introduce some concepts around universes.

We recall the notion of univalence [7, 16].

Definition 4.1. A morphism u : y → x in an ∞-category with finite limits C
is univalent if, for any object z ∈ C, the map of spaces

MapC(z, x) ∋ v 7→ v∗y ∈ Obj(C/z)

is mono.

Example 4.2. π(α) : S•(α) → S(α) is univalent in Cat(β). This is because it
classifies left fibrations with α-small fibers in the sense that, for any C ∈ Cat(β),
the functor

Fun(C,S(α)) ∋ F 7→ F ∗S•(α) ∈ Cat(β)/C

is fully faithful and its image is the class of left fibrations over C with α-small
fibers.

Proposition 4.3. Let C be an ∞-category with finite limits and C′ ⊂ C a
subcategory closed under finite limits. If a morphism u : y → x in C′ is univalent
in C, then it is univalent in C′.

Proof. Let z ∈ C′ be an object. Since C′ ⊂ C is closed under finite limits, we
have the following commutative diagram.

MapC′(z, x) Obj(C′
/z)

MapC(z, x) Obj(C/z).

v 7→v∗y

v 7→v∗y
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The vertical maps are mono since C′ → C is mono, and the bottom map is mono
since u is univalent. Hence, the top map is mono as well.

A univalent morphism induces an indexed ∞-category consisting of small
morphisms.

Definition 4.4. Let u : y → x be a univalent morphism in an ∞-category C
with finite limits. We say a morphism u′ : y′ → x′ is u-small if there exists a
pullback

y′ y

x′ x.

u′
⌟

u

Note that the univalence of u implies that such a pullback is unique.

Construction 4.5. For a univalent morphism u : y → x in an ∞-category C
with finite limits, let Ou

C : Cop → Cat be the functor sending z ∈ C to the full
subcategory of C/z spanned by the u-small morphisms. The action of morphisms
is given by pullback. For a functor F : C → D preserving finite limits, we have

a canonical natural transformation Ou
C(z) → O

F (u)
D (F (z)) for z ∈ C.

We consider when Ou
C(z) has certain limits.

Definition 4.6. Let C ∈ CatLex(λ). By a λ-complete universe in C we mean
a univalent exponentiable morphism u in C such that u-small morphisms are
closed under identities, composition, diagonals, λ-small products, and retracts.

Remark 4.7. Closure under retracts is redundant when λ > ℵ0.

Remark 4.8. Closure under λ-small products is redundant when λ = ℵ0.

Example 4.9. π(α) : S•(α) → S(α) is an α-complete universe in Cat(β), since
left fibrations with α-small fibers are closed under identities, composition, diag-
onals, α-small products, and retracts.

Proposition 4.10. Let u : y → x be a λ-complete universe in C ∈ CatLex(λ).
The functor Ou

C : Cop → Cat factors through CatLex(λ).

Proof. By the closure properties of u-small morphisms.

Proposition 4.11. Let u : y → x be a λ-complete universe in C ∈ CatLex(λ).
For morphisms v : y′ → x′ and w : z′ → y′, if v is u-small, then w is u-small if
and only if v ◦ w is.

Proof. Because u-small morphisms are closed under pullbacks, composition, and
diagonals.

Ou
C is representable in the following sense.

Proposition 4.12. Let u : y → x be a λ-complete universe in C ∈ CatLex(λ).
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1. Obj(Ou
C(z)) ≃ MapC(z, x);

2. Obj(Ou
C(z)idz/) ≃ MapC(z, y);

3. The presheaf z 7→ Obj(Ou
C(z)

→) is representable. The representing object
is denoted by Map(u).

Proof. The first and second equivalences are immediate by construction. For
the last, we define Map(u) ∈ C/x×x to be Map

x×x
(y × x, x× y). Note that, by

Proposition 3.5, the morphism u× x : y × x → x× x is exponentiable.

Remark 4.13. Map(u) is part of the complete Segal object associated to u [15].

We introduce an ∞-category of ∞-categories equipped with a λ-complete
universe.

Definition 4.14. For λ ≤ α < β, we define CatLex(α),Univ(λ)(β) to be the
∞-category whose objects are the β-small ∞-categories with α-small limits and
equipped with a λ-complete universe and whose morphisms are the functors
between them preserving α-small limits, specified λ-complete universes, and
pushforwards along specified λ-complete universes.

5 Presentable ∞-categories

We recall the definition and basic properties of presentable ∞-categories [11,
Section 5.5]. We also find a λ-complete universe in an ∞-category of presentable
∞-categories (Proposition 5.3). The Gabriel-Ulmer duality is rephrased using
that universe (Proposition 5.8).

Definition 5.1. For λ < α, we say an ∞-category X is (α, λ)-presentable if it
is equivalent to Indα

λ(C) for some α-small ∞-category C with λ-small colimits,
where Indα

λ is the completion under α-small λ-filtered colimits. For convention,
we say X is (α, α)-presentable if it is (α, λ)-presentable for some λ < α. By def-
inition, any (α, λ)-presentable ∞-category is β-small for λ ≤ α < β. We define
PrRλ (α) ⊂ Cat(β) to be the subcategory spanned by the (α, λ)-presentable ∞-
categories and right adjoint functors between them preserving α-small λ-filtered
colimits.

Proposition 5.2 ([11, Proposition 5.5.7.6]). PrRλ (α) ⊂ Cat(β) is closed under
α-small limits for λ ≤ α < β.

Proposition 5.3. For λ ≤ α, the functor π(α) : S•(α) → S(α) belongs to
PrRλ (α) and is a λ-complete universe.

Proposition 5.3 is split into a few lemmas.

Lemma 5.4. π(α) belongs to PrRλ (α) and is univalent.
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Proof. Since S•(α) ≃ S(α)1/, it belongs to PrRλ (α) because (α, λ)-presentable
∞-categories are closed under coslice [11, Proposition 5.5.3.11]. The projection
π(α) is in PrRλ (α) as it has the left adjoint ( +1) and preserves filtered colimits.
The univalence of π(α) follows from Propositions 4.3 and 5.2 and Example 4.2.

Lemma 5.5. For a morphism p : Y → X in PrRλ (α), the following are equiva-
lent:

1. p is π(α)-small in PrRλ (α);

2. the functor p is a left fibration representable by some λ-compact object of
X ;

3. the functor p is a left fibration and preserves λ-compact objects.

Proof. 1 ⇒ 2. Suppose that p is the pullback of π(α) along a morphism F :
X → S(α). By definition, F has a left adjoint and preserves α-small λ-filtered
colimits, and thus F is representable by some λ-compact object of X .

2 ⇒ 1. If p is representable by a λ-compact object A ∈ X , then it is the
pullback of π(α) along the functor MapX (A, ) : X → S(α), which belongs to
PrRλ (α).

2 ⇒ 3. The left fibration cod : XA/ → X preserves λ-compact objects
whenever A ∈ X is λ-compact.

3 ⇒ 2. If p is a left fibration, then it is representable because Y has an initial
object. If cod : XA/ → X preserves λ-compact objects, then A is λ-compact as
it is the image of the initial object by cod.

Lemma 5.6. π(α)-small morphisms in PrRλ (α) are closed under identities,
composition, diagonals, λ-small products, and retracts.

Proof. The closure under identities and composition is immediate from Lemma 5.5.
For diagonals, it suffices to show that XA/ → XA/ ×X XA/ ≃ XA+A/ is π(α)-
small whenever A ∈ X is λ-compact, but this is true because the codiagonal
A + A → A is a λ-compact object of XA+A/. For λ-small products (retracts),
use the fact that λ-compact objects are closed under λ-small coproducts (re-
tracts).

Proof of Proposition 5.3. It remains to show that PrRλ (α) ⊂ Cat(β) is closed
under Famπ(α). For a (α, λ)-presentable ∞-category X , the cartesian fibration
Famπ(α)(X ) → S(α) is a presentable fibration in the sense of Gepner, Haugseng,

and Nikolaus [6]. It then follows that Famπ(α)(X ) → S(α) belongs to PrRλ (α) [6,
Theorem 10.3]. Note that [6, Theorem 10.3] does not mention the accessibility
rank, but we can calculate it from the proof of that theorem. It is straightfor-
ward to see that the unit and counit for Famπ(α) belong to PrRλ (α), and thus

PrRλ (α) ⊂ Cat(β) is closed under Famπ(α).

By Propositions 5.2 and 5.3, (PrRλ (α), π(α)) is an object ofCatLex(α),Univ(λ)(β).
We state a version of the Gabriel-Ulmer duality (Proposition 5.8).
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Lemma 5.7. CatLex(λ)(β) is (β, α)-presentable for λ ≤ α < β.

Proof. See [10, Lemma 4.8.4.2]. One can also construct CatLex(λ)(β) directly

in PrRα(β) using Proposition 5.2.

Proposition 5.8. For λ ≤ α < β, the functor

O
π(α)

PrRλ (α)
: PrRλ (α)

op → CatLex(λ)(β)

is fully faithful, and its image is the class of α-compact objects. Moreover, the
inverse of the induced equivalence takes a α-compact object C ∈ CatLex(λ)(β) to
FunLex(λ)(C,S(α)).

Proof. By Lemma 5.5, O
π(α)

PrRλ (α)
(X ) is equivalent to the opposite of the full

subcategory of X spanned by the λ-compact objects. The claim then follows
from [11, Proposition 5.5.7.10] when λ < α and from [19, Proposition 5.1.4]
when λ = α. Note that in [11, Proposition 5.5.7.10], the inverse is given
by CatLex(λ)(α) ∋ C 7→ Indα

λ(Cop) ∈ PrRλ (α)
op, but this is equivalent to

FunLex(λ)( ,S(α)) by [11, Corollary 5.3.5.4], so the last assertion follows when
λ < α. When λ = α, the last assertion is because C ≃ FunLex(α)(Cop,S(α))
when C is (α, α)-presentable by [11, Proposition 5.5.2.2].

6 Slices of complete ∞-categories

Our main theorem is the initiality of (PrRλ (α), π(α)) in CatLex(α),Univ(λ)(β)

(Theorem 7.1). By Proposition 5.8, PrRλ (α) is embedded into CatLex(λ)(β)
op,

so it is good to study CatLex(λ)(β). The most important tool is the following
universal property of slices.

Lemma 6.1 ([13, Proposition 3.25]). Let C be an ∞-category with finite limits
and x ∈ C an object. For any ∞-category D with finite limits, the square

Obj(FunLex(ℵ0)(C/x,D)) Obj(D1/)

Obj(FunLex(ℵ0)(C,D)) Obj(D)

ev∆x

( ◦x∗) cod

evx

is a pullback, where we regard the diagonal ∆x : x → x×x as a global section 1 →
x∗x in C/x. Moreover, the inverse of the induced map Obj(FunLex(ℵ0)(C/x,D)) →
Obj(FunLex(ℵ0)(C,D))×Obj(D)Obj(D1/) sends an object (F, u) to the composite

C/x
F/x−−→ D/F (x)

u∗

−→ D/1 ≃ D.
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Proposition 6.2. Let C be an ∞-category with λ-small limits and x ∈ C an
object. For any ∞-category D with λ-small limits, the square

Obj(FunLex(λ)(C/x,D)) Obj(D1/)

Obj(FunLex(λ)(C,D)) Obj(D)

ev∆x

( ◦x∗) cod

evx

is a pullback.

Proof. The equivalence Obj(FunLex(ℵ0)(C/x,D)) ≃ Obj(FunLex(ℵ0)(C,D))×Obj(D)

Obj(D1/) of Lemma 6.1 is restricted to an equivalence Obj(FunLex(λ)(C/x,D)) ≃
Obj(FunLex(λ)(C,D))×Obj(D)Obj(D1/), because u

∗ ◦F/x preserves λ-small lim-
its whenever F : C → D does.

Construction 6.3. We define ⟨x⟩λ to be the ∞-category with λ-small limits
freely generated by one object x and ⟨s : 1 → x⟩λ the extension of ⟨x⟩λ by a
global section s : 1 → x. Let ι : ⟨x⟩λ → ⟨s : 1 → x⟩λ denote the canonical
morphism in CatLex(λ).

Corollary 6.4. Let C be an ∞-category with λ-small limits and x ∈ C an
object. We regard x and ∆x as morphisms ⟨x⟩λ → C and ⟨s : 1 → x⟩λ → C/x,
respectively, in CatLex(λ). Then

⟨x⟩λ C

⟨s : 1 → x⟩λ C/x

x

ι x∗

∆x

is a pushout in CatLex(λ).

Corollary 6.5. For λ < α, the pushout functor

ι! : CatLex(λ)(α)⟨x⟩λ/ → CatLex(λ)(α)⟨s:1→x⟩λ/

along ι preserves α-small limits.

Under the Gabriel-Ulmer duality (Proposition 5.8), the morphism ι : ⟨x⟩λ →
⟨s : 1 → x⟩λ in CatLex(λ)(β) corresponds to the morphism π(α) : S•(α) → S(α)

in PrRλ (α).

Proposition 6.6. The inclusion PrRλ (α) ⊂ CatLex(λ)(β)
op takes pushforwards

along π(α) to those along ι.

Proof. By Corollary 6.5, this follows from Lemma 5.7 and Lemma 6.7 below.

Lemma 6.7. Let u : A → B be a morphism in a (α, λ)-presentable ∞-category
X . The morphism u is exponentiable in X op if and only if the pushout func-
tor u! : XA/ → XB/ preserves α-small limits. If this is the case, then u∗ :
(X op)/B → (X op)/A takes λ-compact objects in XB/ to λ-compact objects in
XA/.
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Proof. Since u! preserves all colimits, this follows from the adjoint functor the-
orem [11, Corollary 5.5.2.9 (2)].

7 The main theorem

This section is devoted to the proof of the following theorem.

Theorem 7.1. (PrRλ (α), π(α)) is the initial object of CatLex(α),Univ(λ)(β) for
λ ≤ α < β.

The following criterion is useful.

Proposition 7.2 ([12, Proposition 2.2.2]). If an ∞-category C has finite limits,
then an object of C is initial if and only if its is initial in the homotopy category
of C.

CatLex(α),Univ(λ)(β) has finite limits computed component-wise, and thus for
Theorem 7.1 it is enough to construct for every (C, u) ∈ CatLex(α),Univ(λ)(β):

1. a morphism !(C,u) : (PrRλ (α), π(α)) → (C, u);

2. an equivalence !(C,u) ≃ F for any morphism F : (PrRλ (α), π(α)) → (C, u).

For the existence of a morphism !(C,u) : (PrRλ (α), π(α)) → (C, u), we construct a
functor CatLex(λ)(β)

op → Fun(Cop,S(β)) (Construction 7.3) and show that its

restriction to PrRλ (α) ⊂ CatLex(λ)(β)
op (Proposition 5.8) factors through the

Yoneda embedding (Lemma 7.6).

Construction 7.3. Given an object (C, u) ∈ CatLex(α),Univ(λ)(β), we define

NOu
C
: CatLex(λ)(β)

op → Fun(Cop,S(β))

to be the nerve of Ou
C : C → CatLex(λ)(β)

op, that is,

NOu
C
(D) = MapCatLex(λ)(β)

(D,Ou
C( )).

For a morphism F : (C, u) → (D, v) in CatLex(α),Univ(λ)(α), the natural trans-
formation Ou

C ⇒ Ov
D ◦ F induces a natural transformation NOu

C
⇒ F ∗ ◦ NOv

D
:

CatLex(λ)(β)
op → Fun(Cop,S(β)). By the adjunction F! ⊣ F ∗, we have a natu-

ral transformation

F! ◦NOu
C
⇒ NOv

D
: CatLex(λ)(β)

op → Fun(Dop,S(β)). (1)

Construction 7.4. Let ⟨s : x → y⟩λ denote the ∞-category with λ-small limits
freely generated by one morphism s : x → y.

Lemma 7.5. ⟨x⟩λ and ⟨s : x → y⟩λ form a strong generator for CatLex(λ)(β).
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Lemma 7.6. For any (C, u) ∈ CatLex(α),Univ(λ)(β), the restriction of NOu
C
:

CatLex(λ)(β)
op → Fun(Cop,S(β)) to the α-compact objects factors through the

Yoneda embedding C → Fun(Cop,S(β)).

Proof. By Lemma 7.5, it suffices to show the representability of NOu
C
for ⟨x⟩λ

and ⟨s : x → y⟩λ, but this is immediate from Proposition 4.12.

Construction 7.7. Recall from Proposition 5.8 that PrRλ (α)
op is the full sub-

category of CatLex(λ)(β) spanned by the α-compact objects. Let !C : PrRλ (α) →
C be the functor induced by Lemma 7.6.

Lemma 7.8. For any (C, u) ∈ CatLex(α),Univ(λ)(β), the functor !C : PrRλ (α) →
C is a morphism in CatLex(α),Univ(λ)(β).

Proof. By definition, !C preserves small limits. !C sends π(α) : S•(α) → S(α)
to u : y → x by Proposition 4.12, because π(α) corresponds to the morphism
ι : ⟨x⟩λ → ⟨s : 1 → x⟩λ in CatLex(λ)(β) via the Gabriel-Ulmer duality (Proposi-

tion 5.8). For the preservation of the pushforward along π(α), let X ∈ PrRλ (α)
be an object and take the corresponding α-compact object D ∈ CatLex(λ)(β).
We have

MapC(x
′, !C(Famπ(α)(X )))

≃ {definition}
MapCatLex(λ)(β)op

(Ou
C(x

′),Famι(D))

≃ {Corollary 6.4}∑
y′∈Obj(Ou

C(x
′))

MapCatLex(λ)(β)
(D,Ou

C(x
′)/y′)

≃ {Proposition 4.11}∑
y′∈Obj(Ou

C(x
′))

MapCatLex(λ)(β)
(D,Ou

C(y
′))

≃ {definition}∑
v∈MapC(x

′,x)

MapC(x
′ ×x y, !C(X ))

for any x′ ∈ C, and thus !C(Famπ(α)(X )) ≃ Famu(!C(X )).

We have seen the existence of !C : (PrRλ (α), π(α)) → (C, u). The uniqueness
will follow from the functoriality of the construction of !C (Lemmas 7.9 and 7.10).

Lemma 7.9. !PrRλ (α) is the identity.

Proof. By construction.

Lemma 7.10. For any morphism F : (C, u) → (D, v) in CatLex(α),Univ(λ)(β),
we have an equivalence

F ◦ !C ≃ !D.
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Proof. It is enough to show that the canonical natural transformation F! ◦
NOu

C
⇒ NOv

D
(Eq. (1)) is invertible at α-compact objects. Since F!, NOu

C
,

and NOv
D
preserve α-small limits, it suffices to show the invertibility at ⟨x⟩λ and

⟨s : x → y⟩λ by Lemma 7.5, but this is immediate from the construction.

For any morphism F : (PrRλ (α), π(α)) → (C, u) in CatLex(α),Univ(λ)(β), we
have an equivalence !C ≃ F as

!C

≃ {Lemma 7.10}
F ◦ !PrRλ (α)

≃ {Lemma 7.9}
F.

This completes the proof of Theorem 7.1.

8 Presentable n-categories

We consider an n-categorical version of Theorem 7.1. For −1 ≤ n ≤ ∞, by an
n-category we mean an∞-category whose mapping spaces are (n−1)-truncated.
For example, 1-categories are ordinary categories, 0-categories are posets, and
(−1)-categories are subsingletons.

Construction 8.1. For −1 ≤ n < ∞, let n-PrRλ (α) ⊂ PrRλ (α) denote the
full subcategory spanned by (α, λ)-presentable n-categories. The inclusion has
a coreflection, which takes X ∈ PrRλ (α) to the full subcategory X≤n−1 ⊂ X
spanned by the (n− 1)-truncated objects.

Theorem 8.2. (n-PrRλ (α), π(α)≤n−1) is the initial object in the full subcategory
of CatLex(α),Univ(λ)(β) spanned by those objects (C, u) such that u is (n − 1)-
truncated, for −1 ≤ n < ∞ and λ ≤ α < β.

Remark 8.3. If a univalent morphism u is k-truncated for k < ∞, then u-small
morphisms are closed under retracts whenever they are closed under identities,
composition, and diagonals. This is because splittings of idempotents on k-
truncated objects are finite limits.

Example 8.4. Consider the case when n = 0 and λ = ℵ0. A univalent expo-
nentiable monomorphism u is a ℵ0-complete universe if and only if u-small
morphisms are closed under identities and composition, because the diago-
nal of a monomorphism is an equivalence. That is, u is a dominance [17].
By the Gabriel-Ulmer duality (Proposition 5.8), 0-PrRℵ0

(α) is equivalent to
Lat∧(α)

op, the opposite of the ∞-category of α-small meet semilattices. There-
fore, Lat∧(α)

op is the initial ∞-category with α-small limits equipped with an
exponentiable dominance.

In the rest of this section, we prove Theorem 8.2. We first recall a charac-
terization of truncated objects and morphisms.
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Construction 8.5. Let C be an ∞-category with finite limits. We define a
functor ∆ : C→ → C→ by (y → x) 7→ (y → y ×x y). Let ∆k : C→ → C→ denote

the k-fold composition of ∆ and let ∆k
1 be the composite C x 7→(x→1)−−−−−−→ C→ ∆k

−−→
C→.

Proposition 8.6. Let C be an ∞-category with finite limits and k ≥ −2.

1. A morphism u in C is k-truncated if and only if ∆k+2(u) is an equivalence.

2. An object x in C is k-truncated if and only if ∆k+2
1 (x) is an equivalence.

Proof. This follows from [11, Lemma 5.5.6.15].

Given a λ-complete universe, we construct a subuniverse of k-truncated ob-
jects.

Lemma 8.7. Let u : y → x be a univalent exponentiable morphism in an ∞-
category C with finite limits. The morphism idu : x → Map(u) corresponding to
the identity on y is mono.

Proof. Because idu represents the monomorphism Obj(Ou
C(x

′)) ∋ y′ 7→ idy′ ∈
Obj(Ou

C(x
′)→).

Proposition 8.8. Let (C, u : y → x) ∈ CatLex(α),Univ(λ)(β) and k ≤ −2. There
exists a (necessarily) unique λ-complete universe u≤k : y≤k → x≤k in C such
that the u≤k-small morphisms are precisely the k-truncated u-small morphisms.
Moreover, if F : (C, u) → (D, v) is a morphism in CatLex(α),Univ(λ)(β), then F
takes u≤k to v≤k.

Proof. Since the presheaf z 7→ Obj(Ou
C(z)

→) is representable by Map(u), we

have a morphism ∆k
1 : x → Map(u) representing ∆k

1 . Take the pullback

x≤k x

x Map(u),

⌟
idu

∆k+2
1

where idu is mono by Lemma 8.7. We define u≤k : y≤k → x≤k to be the
pullback of u along the monomorphism x≤k → x. Then u≤k is univalent, and
the u≤k-small morphisms are precisely the k-truncated u-small morphisms by
Proposition 8.6. u≤k is a λ-complete universe because k-truncated morphisms
are closed under identities, composition, diagonals, λ-small products, and re-
tracts. The last assertion follows from the construction of u≤k.

Example 8.9. The λ-complete universe π(α)≤n−1 : S•(α)≤n−1 → S(α)≤n−1 in
PrRλ (α) obtained by Proposition 8.8 coincides with the coreflection described in
Construction 8.1.
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Lemma 8.10. The inclusion n-PrRλ (α) → PrRλ (α) defines a morphism

(n-PrRλ (α), π(α)≤n−1) → (PrRλ (α), π(α)≤n−1)

in CatLex(α),Univ(λ)(β).

Proof. Note that the morphism π(α)≤n−1 is indeed a λ-complete universe in
n-PrRλ (α) by Proposition 4.3, since n-categories are closed under limits inCat(β).
Since Famπ(α)≤n−1

preserves n-categories, n-PrRλ (α) ⊂ PrRλ (α) is closed under
Famπ(α)≤n−1

.

Lemma 8.11. The coreflection X 7→ X≤n−1 defines a morphism

(PrRλ (α), π(α)) → (n-PrRλ (α), π(α)≤n−1)

in CatLex(α),Univ(λ)(β).

Proof. Since the coreflection is a right adjoint, it preserves all limits. It remains
to show that Famπ(α)(X )≤n−1 ≃ Famπ(α)≤n−1

(X≤n−1). Recall that an object

of Famπ(α)(X ) is a pair (I, A) consisting of an object I ∈ S(α) and a family of
objects A : I → X . It is (n− 1)-truncated if and only if I and Ai for any i ∈ I
are (n− 1)-truncated, that is, it belongs to Famπ(α)≤n−1

(X≤n−1).

Proof of Theorem 8.2. Let (C, u) be an object of CatLex(α),Univ(λ)(β) with u
(n − 1)-truncated. By Proposition 8.8, the morphism !C of Construction 7.7
defines a morphism (PrRλ , π(α)≤n−1) → (C, u≤n−1). Since u is already (n− 1)-
truncated, u≤n−1 ≃ u. We then have a morphism by composition

(n-PrRλ , π(α)≤n−1) → (PrRλ , π(α)≤n−1)
!C−→ (C, u).

The uniqueness follows because X 7→ X≤n−1 is a coreflection and is a morphism
(PrRλ (α), π(α)) → (n-PrRλ (α), π(α)≤n−1) in CatLex(α),Univ(λ)(β).
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