ホモトピー型理論
[001X] 補題

\(i\)を階数、\(A:\mathcal {U}(i)\)を型、\(B:A\to \mathcal {U}(i)\)を型の族、\(c_{1},c_{2}:\sum _{x:A}B(x)\)を要素とすると、

\(\mathord {\textnormal {\textsf {Retract}}}(\sum _{z:\mathord {\textnormal {\textsf {proj}}}_{1}(c_{1})=\mathord {\textnormal {\textsf {proj}}}_{1}(c_{2})}\mathord {\textnormal {\textsf {transport}}}(B,z,\mathord {\textnormal {\textsf {proj}}}_{2}(c_{1}))=\mathord {\textnormal {\textsf {proj}}}_{2}(c_{2}),c_{1}=c_{2})\)
の要素を構成できる。

証明

関数\(f:(\sum _{z:\mathord {\textnormal {\textsf {proj}}}_{1}(c_{1})=\mathord {\textnormal {\textsf {proj}}}_{1}(c_{2})}\mathord {\textnormal {\textsf {transport}}}(B,z,\mathord {\textnormal {\textsf {proj}}}_{2}(c_{1}))=\mathord {\textnormal {\textsf {proj}}}_{2}(c_{2}))\to c_{1}=c_{2}\)\(g:c_{1}=c_{2}\to (\sum _{z:\mathord {\textnormal {\textsf {proj}}}_{1}(c_{1})=\mathord {\textnormal {\textsf {proj}}}_{1}(c_{2})}\mathord {\textnormal {\textsf {transport}}}(B,z,\mathord {\textnormal {\textsf {proj}}}_{2}(c_{1}))=\mathord {\textnormal {\textsf {proj}}}_{2}(c_{2}))\)と同一視\(p:\prod _{w}g(f(w))=w\)を構成する。\(f\)についてはカリー化、一般化して

\(f':\prod _{\lbrace x:A\rbrace }\prod _{\lbrace y:B(x)\rbrace }\prod _{z:\mathord {\textnormal {\textsf {proj}}}_{1}(c_{1})=x}\mathord {\textnormal {\textsf {transport}}}(B,z,\mathord {\textnormal {\textsf {proj}}}_{2}(c_{1}))=y\to c_{1}=\mathord {\textnormal {\textsf {pair}}}(x,y)\)
を構成すればよいが、同一視型の帰納法により\(f'(\mathord {\textnormal {\textsf {refl}}},\mathord {\textnormal {\textsf {refl}}})\equiv \mathord {\textnormal {\textsf {refl}}}\)と定義できる。\(g\)は一般化して
\(g':\prod _{\lbrace y:\sum _{x:A}B(x)\rbrace }c_{1}=y\to (\sum _{z:\mathord {\textnormal {\textsf {proj}}}_{1}(c_{1})=\mathord {\textnormal {\textsf {proj}}}_{1}(y)}\mathord {\textnormal {\textsf {transport}}}(B,z,\mathord {\textnormal {\textsf {proj}}}_{2}(c_{1}))=\mathord {\textnormal {\textsf {proj}}}_{2}(y))\)
を帰納法で\(g'(\mathord {\textnormal {\textsf {refl}}})\equiv \mathord {\textnormal {\textsf {pair}}}(\mathord {\textnormal {\textsf {refl}}},\mathord {\textnormal {\textsf {refl}}})\)と定義する。\(p\)\(f\)と同様にカリー化、一般化して
\(p':\prod _{\lbrace x\rbrace }\prod _{\lbrace y\rbrace }\prod _{z:\mathord {\textnormal {\textsf {proj}}}_{1}(c_{1})=x}\prod _{w:\mathord {\textnormal {\textsf {transport}}}(B,z,\mathord {\textnormal {\textsf {proj}}}_{2}(c_{1}))=y}g'(f'(z,w))=\mathord {\textnormal {\textsf {pair}}}(z,w)\)
を帰納法により\(p'(\mathord {\textnormal {\textsf {refl}}},\mathord {\textnormal {\textsf {refl}}})\equiv \mathord {\textnormal {\textsf {refl}}}\)と定義する。