ホモトピー型理論

[007X] 記法の一覧

  • -\(\neg P\)[0058]
  • -\(-1\) (truncation level) → [003X]
  • -\(-2\) (truncation level) → [003X]
  • -\(\mathbf {0}\)[0030]
  • -\(0\) (自然数) → [002V]
  • -\(0\) (階数) → [000D]
  • -\(\mathbf {1}\)[000K]
  • -\(A\mathbin {{}_{f}\smash {+}_{g}}B\)[003R]
  • -\(A(x)\) (前層) → [006F]
  • -\(A+B\)[002Z]
  • -\(A\to B\)[000G]
  • -\(A\leftrightarrow B\)[001T]
  • -\(A\mathrel {\triangleleft \triangleright }B\)[001J]
  • -\(A\triangleleft B\)[001J]
  • -\(A\simeq B\)[000V]
  • -\(A\times B\)[000M]
  • -\(\mathord {\textnormal {\textsf {BiFun}}}(C_{1},C_{2};D)\)[006Q]
  • -\(\mathord {\textnormal {\textsf {Cat}}}(i)\)[005I]
  • -\(\mathord {\textnormal {\textsf {Cocone}}}\)[007K]
  • -\(\mathord {\textnormal {\textsf {CoconeOver}}}\)[007O]
  • -\(\mathord {\textnormal {\textsf {Cofiber}}}\)[007W]
  • -\(\mathord {\textnormal {\textsf {D}}}\)[0083]
  • -\(F(f)\) (関手を射に適用) → [005L]
  • -\(F(x)\) (関手を対象に適用) → [005L]
  • -\(\mathord {\textnormal {\textsf {Fiber}}}\)[001P]
  • -\(\mathord {\textnormal {\textsf {Fiber}}}^{\cong }\)[006Y]
  • -\(\mathord {\textnormal {\textsf {Fun}}}\)[005K]
  • -\(\mathord {\textnormal {\textsf {Fun}}}^{(\mathord {\textnormal {\textsf {Cat}}})}\)[0069]
  • -\(\mathord {\textnormal {\textsf {Group}}}(i)\)[004W]
  • -\(\mathord {\textnormal {\textsf {Hom}}}\)[006G]
  • -\(\mathord {\textnormal {\textsf {IsBiinv}}}\)[004J]
  • -\(\mathord {\textnormal {\textsf {IsCart}}}\) (余錐) → [007S]
  • -\(\mathord {\textnormal {\textsf {IsCart}}}\) (スパン) → [007R]
  • -\(\mathord {\textnormal {\textsf {IsCat}}}\)[005I]
  • -\(\mathord {\textnormal {\textsf {IsConnMap}}}\)[005V]
  • -\(\mathord {\textnormal {\textsf {IsConnected}}}\)[005U]
  • -\(\mathord {\textnormal {\textsf {IsContr}}}\)[000T]
  • -\(\mathord {\textnormal {\textsf {IsEmb}}}\)[005Y]
  • -\(\mathord {\textnormal {\textsf {IsEquiv}}}\)[001Q]
  • -\(\mathord {\textnormal {\textsf {IsEssSurj}}}\)[005O]
  • -\(\mathord {\textnormal {\textsf {IsFF}}}\)[005O]
  • -\(\mathord {\textnormal {\textsf {IsHAE}}}\)[004L]
  • -\(\mathord {\textnormal {\textsf {IsIso}}}\) (前圏の同型) → [005M]
  • -\(\mathord {\textnormal {\textsf {IsIso}}}\)[005E]
  • -\(\mathord {\textnormal {\textsf {IsLocal}}}\)[0080]
  • -\(\mathord {\textnormal {\textsf {IsProp}}}\)[0040]
  • -\(\mathord {\textnormal {\textsf {IsRepr}}}\)[0070]
  • -\(\mathord {\textnormal {\textsf {IsSet}}}\)[004C]
  • -\(\mathord {\textnormal {\textsf {IsSurj}}}\)[005Z]
  • -\(\mathord {\textnormal {\textsf {IsTrunc}}}\)[003Y]
  • -\(\mathord {\textnormal {\textsf {IsTruncMap}}}\)[005Q]
  • -\(\mathord {\textnormal {\textsf {IsUniversal}}}\)[007M]
  • -\(\mathord {\textnormal {\textsf {IsWCatEquiv}}}\)[005O]
  • -\(\mathord {\textnormal {\textsf {LInv}}}\) (前圏) → [005E]
  • -\(\mathord {\textnormal {\textsf {LInv}}}\)[004J]
  • -\(\mathord {\textnormal {\textsf {Loc}}}\)[0084]
  • -\(\mathord {\textnormal {\textsf {LocalGen}}}(i)\)[007Z]
  • -\(\mathord {\textnormal {\textsf {Magma}}}(i)\)[008B]
  • -\(\mathord {\textnormal {\textsf {Map}}}^{(\mathord {\textnormal {\textsf {Fun}}})}\)[006S]
  • -\(\mathbb {N}\)[002V]
  • -\(\mathord {\textnormal {\textsf {NatTrans}}}\)[0066]
  • -\(\mathord {\textnormal {\textsf {Op}}}\)[006N]
  • -\(P\land Q\)[0058]
  • -\(P\Leftrightarrow Q\)[0058]
  • -\(P\Rightarrow Q\)[0058]
  • -\(P\lor Q\)[0058]
  • -\(\prod _{x:A}B\)[000H]
  • -\(\prod _{\lbrace x:A\rbrace }B\)[000Q]
  • -\(\mathord {\textnormal {\textsf {PreCat}}}(i)\)[005C]
  • -\(\mathord {\textnormal {\textsf {Psh}}}\)[006E]
  • -\(\mathord {\textnormal {\textsf {Psh}}}^{(\mathord {\textnormal {\textsf {Cat}}})}\)[006K]
  • -\(\mathord {\textnormal {\textsf {QInv}}}\)[004T]
  • -\(\mathord {\textnormal {\textsf {RInv}}}\) (前圏) → [005E]
  • -\(\mathord {\textnormal {\textsf {RInv}}}\)[004J]
  • -\(\mathord {\textnormal {\textsf {Record}}}\mathopen {\{ \negmedspace |}x_{1}:A_{1},\dots ,x_{n}:A_{n}\mathclose {|\negmedspace \} }\)[000O]
  • -\(\mathord {\textnormal {\textsf {ReflGraph}}}(i)\)[008C]
  • -\(\mathord {\textnormal {\textsf {Retract}}}\)[001J]
  • -\(\mathord {\textnormal {\textsf {Ring}}}(i)\)[004Y]
  • -\(\mathbb {S}^{-1}\)[003M]
  • -\(\mathord {\textnormal {\textsf {Set}}}^{(\mathord {\textnormal {\textsf {Cat}}})}(i)\)[006H]
  • -\(\sum _{x:A}B\)[000L]
  • -\(\mathbb {S}^{n}\)[003M]
  • -\(\mathord {\textnormal {\textsf {Span}}}(i)\)[007J]
  • -\(\mathord {\textnormal {\textsf {SpanOver}}}\)[007N]
  • -\(\mathord {\textnormal {\textsf {Susp}}}\)[007V]
  • -\(\top \)[0058]
  • -\(\mathord {\textnormal {\textsf {Total}}}\) (余錐) → [007Q]
  • -\(\mathord {\textnormal {\textsf {Total}}}\) (スパン) → [007P]
  • -\(\mathord {\textnormal {\textsf {TruncLevel}}}\)[003X]
  • -\(\mathcal {U}(i)\)[000E]
  • -\(\mathcal {U}_{\bullet }(i)\)[008A]
  • -\(\mathord {\textnormal {\textsf {WLoc}}}\)[0081]
  • -\(\bot \)[0058]
  • -\(a\cdot f\)[006F]
  • -\(a.x\)[000O]
  • -\(a_{1}=a_{2}\)[000P]
  • -\(a:A\)[0088]
  • -\(\alpha \equiv \beta \)[0086]
  • -\(\alpha [x_{1}\mapsto a_{1},\dots ,x_{n}\mapsto a_{n}]\)[0087]
  • -\(\mathord {\textnormal {\textsf {ap}}}(f)\)[001F]
  • -\(\mathord {\textnormal {\textsf {apd}}}\)[007I]
  • -\(b_{1}=_{p}^{B}b_{2}\)[003L]
  • -\(\mathord {\textnormal {\textsf {cmp}}}\)[007L]
  • -\(\mathord {\textnormal {\textsf {codiag}}}\)[0082]
  • -\(\exists _{x:A}P(x)\)[0058]
  • -\(\mathord {\textnormal {\textsf {ext}}}\) (弱局所化) → [0081]
  • -\(\mathord {\textnormal {\textsf {ext}}}\)[001D]
  • -\(f(a)\) (関数適用) → [000H]
  • -\(f(a_{1},\dots ,a_{n})\) (関数適用) → [000J]
  • -\(f(p)\) (関数を同一視に適用) → [001F]
  • -\(\forall _{x:A}P(x)\)[0058]
  • -\(f\lbrace a\rbrace \)[000Q]
  • -\(f\sim g\)[002I]
  • -\(\mathord {\textnormal {\textsf {gen}}}\) (米田) → [006U]
  • -\(\mathord {\textnormal {\textsf {glue}}}\)[003R]
  • -\(f_{2}\circ f_{1}\) (前層の射) → [006L]
  • -\(f_{2}\circ f_{1}\) (前圏) → [005D]
  • -\(g\circ f\) (関数) → [0011]
  • -\(\mathord {\textnormal {\textsf {id}}}\) (前層の射) → [006L]
  • -\(\mathord {\textnormal {\textsf {id}}}\) (自然変換) → [0067]
  • -\(\mathord {\textnormal {\textsf {id}}}\) (前圏) → [005D]
  • -\(\mathord {\textnormal {\textsf {in}}}\) (弱局所化) → [0081]
  • -\(\mathord {\textnormal {\textsf {in}}}_{1}\) (ファイバー余積) → [003R]
  • -\(\mathord {\textnormal {\textsf {in}}}_{1}\) (余積) → [002Z]
  • -\(\mathord {\textnormal {\textsf {in}}}_{2}\) (ファイバー余積) → [003R]
  • -\(\mathord {\textnormal {\textsf {in}}}_{2}\) (余積) → [002Z]
  • -\(\mathord {\textnormal {\textsf {ind}}}_{+}\)[002Z]
  • -\(\mathord {\textnormal {\textsf {ind}}}_{\mathbin {{}_{.}\smash {+}_{.}}}\)[003R]
  • -\(\mathord {\mathord {\textnormal {\textsf {ind}}}_{\mathbin {{}_{.}\smash {+}_{.}}}\mathord {\textnormal {\textsf {-}}}\mathord {\textnormal {\textsf {glue}}}}\)[003R]
  • -\(\mathord {\textnormal {\textsf {ind}}}_{\mathbf {0}}\)[0030]
  • -\(\mathord {\textnormal {\textsf {ind}}}_{=}\)[000P]
  • -\(\mathord {\textnormal {\textsf {ind}}}_{\mathbb {N}}\)[002V]
  • -\(\mathord {\textnormal {\textsf {ind}}}_{{\| A\| }_{n}}\)[0050]
  • -\(\mathord {\textnormal {\textsf {is-ext}}}\) (弱局所化) → [0081]
  • -\(\mathord {\langle n\rangle \mathord {\textnormal {\textsf {-Type}}}}(i)\)[0053]
  • -\({p}^{-1}\)[001E]
  • -\(\mathord {\textnormal {\textsf {pair}}}\)[000L]
  • -\(\mathord {\textnormal {\textsf {proj}}}_{1}\)[000L]
  • -\(\mathord {\textnormal {\textsf {proj}}}_{2}\)[000L]
  • -\(q\circ p\) (同一視) → [001E]
  • -\(\mathord {\textnormal {\textsf {record}}}\mathopen {\{ \negmedspace |}x_{1}\equiv a_{1},\dots ,x_{n}\equiv a_{n}\mathclose {|\negmedspace \} }\)[000O]
  • -\(\mathord {\textnormal {\textsf {refl}}}\)[000P]
  • -\(\mathord {\textnormal {\textsf {succ}}}\) (自然数) → [002V]
  • -\(\mathord {\textnormal {\textsf {succ}}}(i)\) (階数) → [000D]
  • -\(t_{2}\circ t_{1}\) (自然変換) → [0067]
  • -\(\mathord {\textnormal {\textsf {transport}}}\)[001C]
  • -\(x_{1}\cong x_{2}\)[005F]
  • -\(\lbrace x:A\mid B(x)\rbrace \)[004A]
  • -\({|a|}_{n}\)[0050]
  • -\({\| A\| }_{n}\)[0050]
  • -\(\lambda (x_{1},\dots ,x_{n}).b\)[000J]
  • -\(\lambda x.b\)[000H]
  • -\(\mathord {\star }\)[000K]
  • -\(\mathord {\textnormal {\textsf {よ}}}\)[006P]