ホモトピー型理論

[007X] 記法の一覧

  • -¬P\neg P[0058]
  • -1-1 (truncation level) → [003X]
  • -2-2 (truncation level) → [003X]
  • -0\mathbf {0}[0030]
  • -00 (自然数) → [002V]
  • -00 (階数) → [000D]
  • -1\mathbf {1}[000K]
  • -Af+gBA\mathbin {{}_{f}\smash {+}_{g}}B[003R]
  • -A(x)A(x) (前層) → [006F]
  • -A+BA+B[002Z]
  • -ABA\to B[000G]
  • -ABA\leftrightarrow B[001T]
  • -ABA\mathrel {\triangleleft \triangleright }B[001J]
  • -ABA\triangleleft B[001J]
  • -ABA\simeq B[000V]
  • -A×BA\times B[000M]
  • -BiFun(C1,C2;D)\mathord {\textnormal {\textsf {BiFun}}}(C_{1},C_{2};D)[006Q]
  • -Cat(i)\mathord {\textnormal {\textsf {Cat}}}(i)[005I]
  • -Cocone\mathord {\textnormal {\textsf {Cocone}}}[007K]
  • -CoconeOver\mathord {\textnormal {\textsf {CoconeOver}}}[007O]
  • -Cofiber\mathord {\textnormal {\textsf {Cofiber}}}[007W]
  • -D\mathord {\textnormal {\textsf {D}}}[0083]
  • -F(f)F(f) (関手を射に適用) → [005L]
  • -F(x)F(x) (関手を対象に適用) → [005L]
  • -Fiber\mathord {\textnormal {\textsf {Fiber}}}[001P]
  • -Fiber\mathord {\textnormal {\textsf {Fiber}}}^{\cong }[006Y]
  • -Fun\mathord {\textnormal {\textsf {Fun}}}[005K]
  • -Fun(Cat)\mathord {\textnormal {\textsf {Fun}}}^{(\mathord {\textnormal {\textsf {Cat}}})}[0069]
  • -Group(i)\mathord {\textnormal {\textsf {Group}}}(i)[004W]
  • -Hom\mathord {\textnormal {\textsf {Hom}}}[006G]
  • -IsBiinv\mathord {\textnormal {\textsf {IsBiinv}}}[004J]
  • -IsCart\mathord {\textnormal {\textsf {IsCart}}} (余錐) → [007S]
  • -IsCart\mathord {\textnormal {\textsf {IsCart}}} (スパン) → [007R]
  • -IsCat\mathord {\textnormal {\textsf {IsCat}}}[005I]
  • -IsConnMap\mathord {\textnormal {\textsf {IsConnMap}}}[005V]
  • -IsConnected\mathord {\textnormal {\textsf {IsConnected}}}[005U]
  • -IsContr\mathord {\textnormal {\textsf {IsContr}}}[000T]
  • -IsEmb\mathord {\textnormal {\textsf {IsEmb}}}[005Y]
  • -IsEquiv\mathord {\textnormal {\textsf {IsEquiv}}}[001Q]
  • -IsEssSurj\mathord {\textnormal {\textsf {IsEssSurj}}}[005O]
  • -IsFF\mathord {\textnormal {\textsf {IsFF}}}[005O]
  • -IsHAE\mathord {\textnormal {\textsf {IsHAE}}}[004L]
  • -IsIso\mathord {\textnormal {\textsf {IsIso}}} (前圏の同型) → [005M]
  • -IsIso\mathord {\textnormal {\textsf {IsIso}}}[005E]
  • -IsLocal\mathord {\textnormal {\textsf {IsLocal}}}[0080]
  • -IsProp\mathord {\textnormal {\textsf {IsProp}}}[0040]
  • -IsRepr\mathord {\textnormal {\textsf {IsRepr}}}[0070]
  • -IsSet\mathord {\textnormal {\textsf {IsSet}}}[004C]
  • -IsSurj\mathord {\textnormal {\textsf {IsSurj}}}[005Z]
  • -IsTrunc\mathord {\textnormal {\textsf {IsTrunc}}}[003Y]
  • -IsTruncMap\mathord {\textnormal {\textsf {IsTruncMap}}}[005Q]
  • -IsUniversal\mathord {\textnormal {\textsf {IsUniversal}}}[007M]
  • -IsWCatEquiv\mathord {\textnormal {\textsf {IsWCatEquiv}}}[005O]
  • -LInv\mathord {\textnormal {\textsf {LInv}}} (前圏) → [005E]
  • -LInv\mathord {\textnormal {\textsf {LInv}}}[004J]
  • -Loc\mathord {\textnormal {\textsf {Loc}}}[0084]
  • -LocalGen(i)\mathord {\textnormal {\textsf {LocalGen}}}(i)[007Z]
  • -Magma(i)\mathord {\textnormal {\textsf {Magma}}}(i)[008B]
  • -Map(Fun)\mathord {\textnormal {\textsf {Map}}}^{(\mathord {\textnormal {\textsf {Fun}}})}[006S]
  • -N\mathbb {N}[002V]
  • -NatTrans\mathord {\textnormal {\textsf {NatTrans}}}[0066]
  • -Op\mathord {\textnormal {\textsf {Op}}}[006N]
  • -PQP\land Q[0058]
  • -PQP\Leftrightarrow Q[0058]
  • -PQP\Rightarrow Q[0058]
  • -PQP\lor Q[0058]
  • -x:AB\prod _{x:A}B[000H]
  • -{x:A}B\prod _{\lbrace x:A\rbrace }B[000Q]
  • -PreCat(i)\mathord {\textnormal {\textsf {PreCat}}}(i)[005C]
  • -Psh\mathord {\textnormal {\textsf {Psh}}}[006E]
  • -Psh(Cat)\mathord {\textnormal {\textsf {Psh}}}^{(\mathord {\textnormal {\textsf {Cat}}})}[006K]
  • -QInv\mathord {\textnormal {\textsf {QInv}}}[004T]
  • -RInv\mathord {\textnormal {\textsf {RInv}}} (前圏) → [005E]
  • -RInv\mathord {\textnormal {\textsf {RInv}}}[004J]
  • -Record{ ⁣x1:A1,,xn:An ⁣}\mathord {\textnormal {\textsf {Record}}}\mathopen {\{ \negmedspace |}x_{1}:A_{1},\dots ,x_{n}:A_{n}\mathclose {|\negmedspace \} }[000O]
  • -ReflGraph(i)\mathord {\textnormal {\textsf {ReflGraph}}}(i)[008C]
  • -Retract\mathord {\textnormal {\textsf {Retract}}}[001J]
  • -Ring(i)\mathord {\textnormal {\textsf {Ring}}}(i)[004Y]
  • -S1\mathbb {S}^{-1}[003M]
  • -Set(Cat)(i)\mathord {\textnormal {\textsf {Set}}}^{(\mathord {\textnormal {\textsf {Cat}}})}(i)[006H]
  • -x:AB\sum _{x:A}B[000L]
  • -Sn\mathbb {S}^{n}[003M]
  • -Span(i)\mathord {\textnormal {\textsf {Span}}}(i)[007J]
  • -SpanOver\mathord {\textnormal {\textsf {SpanOver}}}[007N]
  • -Susp\mathord {\textnormal {\textsf {Susp}}}[007V]
  • -\top [0058]
  • -Total\mathord {\textnormal {\textsf {Total}}} (余錐) → [007Q]
  • -Total\mathord {\textnormal {\textsf {Total}}} (スパン) → [007P]
  • -TruncLevel\mathord {\textnormal {\textsf {TruncLevel}}}[003X]
  • -U(i)\mathcal {U}(i)[000E]
  • -U(i)\mathcal {U}_{\bullet }(i)[008A]
  • -WLoc\mathord {\textnormal {\textsf {WLoc}}}[0081]
  • -\bot [0058]
  • -afa\cdot f[006F]
  • -a.xa.x[000O]
  • -a1=a2a_{1}=a_{2}[000P]
  • -a:Aa:A[0088]
  • -αβ\alpha \equiv \beta [0086]
  • -α[x1a1,,xnan]\alpha [x_{1}\mapsto a_{1},\dots ,x_{n}\mapsto a_{n}][0087]
  • -ap(f)\mathord {\textnormal {\textsf {ap}}}(f)[001F]
  • -apd\mathord {\textnormal {\textsf {apd}}}[007I]
  • -b1=pBb2b_{1}=_{p}^{B}b_{2}[003L]
  • -cmp\mathord {\textnormal {\textsf {cmp}}}[007L]
  • -codiag\mathord {\textnormal {\textsf {codiag}}}[0082]
  • -x:AP(x)\exists _{x:A}P(x)[0058]
  • -ext\mathord {\textnormal {\textsf {ext}}} (弱局所化) → [0081]
  • -ext\mathord {\textnormal {\textsf {ext}}}[001D]
  • -f(a)f(a) (関数適用) → [000H]
  • -f(a1,,an)f(a_{1},\dots ,a_{n}) (関数適用) → [000J]
  • -f(p)f(p) (関数を同一視に適用) → [001F]
  • -x:AP(x)\forall _{x:A}P(x)[0058]
  • -f{a}f\lbrace a\rbrace [000Q]
  • -fgf\sim g[002I]
  • -gen\mathord {\textnormal {\textsf {gen}}} (米田) → [006U]
  • -glue\mathord {\textnormal {\textsf {glue}}}[003R]
  • -f2f1f_{2}\circ f_{1} (前層の射) → [006L]
  • -f2f1f_{2}\circ f_{1} (前圏) → [005D]
  • -gfg\circ f (関数) → [0011]
  • -id\mathord {\textnormal {\textsf {id}}} (前層の射) → [006L]
  • -id\mathord {\textnormal {\textsf {id}}} (自然変換) → [0067]
  • -id\mathord {\textnormal {\textsf {id}}} (前圏) → [005D]
  • -in\mathord {\textnormal {\textsf {in}}} (弱局所化) → [0081]
  • -in1\mathord {\textnormal {\textsf {in}}}_{1} (ファイバー余積) → [003R]
  • -in1\mathord {\textnormal {\textsf {in}}}_{1} (余積) → [002Z]
  • -in2\mathord {\textnormal {\textsf {in}}}_{2} (ファイバー余積) → [003R]
  • -in2\mathord {\textnormal {\textsf {in}}}_{2} (余積) → [002Z]
  • -ind+\mathord {\textnormal {\textsf {ind}}}_{+}[002Z]
  • -ind.+.\mathord {\textnormal {\textsf {ind}}}_{\mathbin {{}_{.}\smash {+}_{.}}}[003R]
  • -ind.+.-glue\mathord {\mathord {\textnormal {\textsf {ind}}}_{\mathbin {{}_{.}\smash {+}_{.}}}\mathord {\textnormal {\textsf {-}}}\mathord {\textnormal {\textsf {glue}}}}[003R]
  • -ind0\mathord {\textnormal {\textsf {ind}}}_{\mathbf {0}}[0030]
  • -ind=\mathord {\textnormal {\textsf {ind}}}_{=}[000P]
  • -indN\mathord {\textnormal {\textsf {ind}}}_{\mathbb {N}}[002V]
  • -indAn\mathord {\textnormal {\textsf {ind}}}_{{\| A\| }_{n}}[0050]
  • -is-ext\mathord {\textnormal {\textsf {is-ext}}} (弱局所化) → [0081]
  • -n-Type(i)\mathord {\langle n\rangle \mathord {\textnormal {\textsf {-Type}}}}(i)[0053]
  • -p1{p}^{-1}[001E]
  • -pair\mathord {\textnormal {\textsf {pair}}}[000L]
  • -proj1\mathord {\textnormal {\textsf {proj}}}_{1}[000L]
  • -proj2\mathord {\textnormal {\textsf {proj}}}_{2}[000L]
  • -qpq\circ p (同一視) → [001E]
  • -record{ ⁣x1a1,,xnan ⁣}\mathord {\textnormal {\textsf {record}}}\mathopen {\{ \negmedspace |}x_{1}\equiv a_{1},\dots ,x_{n}\equiv a_{n}\mathclose {|\negmedspace \} }[000O]
  • -refl\mathord {\textnormal {\textsf {refl}}}[000P]
  • -succ\mathord {\textnormal {\textsf {succ}}} (自然数) → [002V]
  • -succ(i)\mathord {\textnormal {\textsf {succ}}}(i) (階数) → [000D]
  • -t2t1t_{2}\circ t_{1} (自然変換) → [0067]
  • -transport\mathord {\textnormal {\textsf {transport}}}[001C]
  • -x1x2x_{1}\cong x_{2}[005F]
  • -{x:AB(x)}\lbrace x:A\mid B(x)\rbrace [004A]
  • -an{|a|}_{n}[0050]
  • -An{\| A\| }_{n}[0050]
  • -λ(x1,,xn).b\lambda (x_{1},\dots ,x_{n}).b[000J]
  • -λx.b\lambda x.b[000H]
  • -\mathord {\star }[000K]
  • -\mathord {\textnormal {\textsf {よ}}}[006P]