- -\(\neg P\) → [0058]
- -\(-1\) (truncation level) → [003X]
- -\(-2\) (truncation level) → [003X]
- -\(\mathbf {0}\) → [0030]
- -\(0\) (自然数) → [002V]
- -\(0\) (階数) → [000D]
- -\(\mathbf {1}\) → [000K]
- -\(A\mathbin {{}_{f}\smash {+}_{g}}B\) → [003R]
- -\(A(x)\) (前層) → [006F]
- -\(A+B\) → [002Z]
- -\(A\to B\) → [000G]
- -\(A\leftrightarrow B\) → [001T]
- -\(A\mathrel {\triangleleft \triangleright }B\) → [001J]
- -\(A\triangleleft B\) → [001J]
- -\(A\simeq B\) → [000V]
- -\(A\times B\) → [000M]
- -\(\mathord {\textnormal {\textsf {BiFun}}}(C_{1},C_{2};D)\) → [006Q]
- -\(\mathord {\textnormal {\textsf {Cat}}}(i)\) → [005I]
- -\(\mathord {\textnormal {\textsf {Cocone}}}\) → [007K]
- -\(\mathord {\textnormal {\textsf {CoconeOver}}}\) → [007O]
- -\(\mathord {\textnormal {\textsf {Cofiber}}}\) → [007W]
- -\(\mathord {\textnormal {\textsf {D}}}\) → [0083]
- -\(F(f)\) (関手を射に適用) → [005L]
- -\(F(x)\) (関手を対象に適用) → [005L]
- -\(\mathord {\textnormal {\textsf {Fiber}}}\) → [001P]
- -\(\mathord {\textnormal {\textsf {Fiber}}}^{\cong }\) → [006Y]
- -\(\mathord {\textnormal {\textsf {Fun}}}\) → [005K]
- -\(\mathord {\textnormal {\textsf {Fun}}}^{(\mathord {\textnormal {\textsf {Cat}}})}\) → [0069]
- -\(\mathord {\textnormal {\textsf {Group}}}(i)\) → [004W]
- -\(\mathord {\textnormal {\textsf {Hom}}}\) → [006G]
- -\(\mathord {\textnormal {\textsf {IsBiinv}}}\) → [004J]
- -\(\mathord {\textnormal {\textsf {IsCart}}}\) (余錐) → [007S]
- -\(\mathord {\textnormal {\textsf {IsCart}}}\) (スパン) → [007R]
- -\(\mathord {\textnormal {\textsf {IsCat}}}\) → [005I]
- -\(\mathord {\textnormal {\textsf {IsConnMap}}}\) → [005V]
- -\(\mathord {\textnormal {\textsf {IsConnected}}}\) → [005U]
- -\(\mathord {\textnormal {\textsf {IsContr}}}\) → [000T]
- -\(\mathord {\textnormal {\textsf {IsEmb}}}\) → [005Y]
- -\(\mathord {\textnormal {\textsf {IsEquiv}}}\) → [001Q]
- -\(\mathord {\textnormal {\textsf {IsEssSurj}}}\) → [005O]
- -\(\mathord {\textnormal {\textsf {IsFF}}}\) → [005O]
- -\(\mathord {\textnormal {\textsf {IsHAE}}}\) → [004L]
- -\(\mathord {\textnormal {\textsf {IsIso}}}\) (前圏の同型) → [005M]
- -\(\mathord {\textnormal {\textsf {IsIso}}}\) → [005E]
- -\(\mathord {\textnormal {\textsf {IsLocal}}}\) → [0080]
- -\(\mathord {\textnormal {\textsf {IsProp}}}\) → [0040]
- -\(\mathord {\textnormal {\textsf {IsRepr}}}\) → [0070]
- -\(\mathord {\textnormal {\textsf {IsSet}}}\) → [004C]
- -\(\mathord {\textnormal {\textsf {IsSurj}}}\) → [005Z]
- -\(\mathord {\textnormal {\textsf {IsTrunc}}}\) → [003Y]
- -\(\mathord {\textnormal {\textsf {IsTruncMap}}}\) → [005Q]
- -\(\mathord {\textnormal {\textsf {IsUniversal}}}\) → [007M]
- -\(\mathord {\textnormal {\textsf {IsWCatEquiv}}}\) → [005O]
- -\(\mathord {\textnormal {\textsf {LInv}}}\) (前圏) → [005E]
- -\(\mathord {\textnormal {\textsf {LInv}}}\) → [004J]
- -\(\mathord {\textnormal {\textsf {Loc}}}\) → [0084]
- -\(\mathord {\textnormal {\textsf {LocalGen}}}(i)\) → [007Z]
- -\(\mathord {\textnormal {\textsf {Magma}}}(i)\) → [008B]
- -\(\mathord {\textnormal {\textsf {Map}}}^{(\mathord {\textnormal {\textsf {Fun}}})}\) → [006S]
- -\(\mathbb {N}\) → [002V]
- -\(\mathord {\textnormal {\textsf {NatTrans}}}\) → [0066]
- -\(\mathord {\textnormal {\textsf {Op}}}\) → [006N]
- -\(P\land Q\) → [0058]
- -\(P\Leftrightarrow Q\) → [0058]
- -\(P\Rightarrow Q\) → [0058]
- -\(P\lor Q\) → [0058]
- -\(\prod _{x:A}B\) → [000H]
- -\(\prod _{\lbrace x:A\rbrace }B\) → [000Q]
- -\(\mathord {\textnormal {\textsf {PreCat}}}(i)\) → [005C]
- -\(\mathord {\textnormal {\textsf {Psh}}}\) → [006E]
- -\(\mathord {\textnormal {\textsf {Psh}}}^{(\mathord {\textnormal {\textsf {Cat}}})}\) → [006K]
- -\(\mathord {\textnormal {\textsf {QInv}}}\) → [004T]
- -\(\mathord {\textnormal {\textsf {RInv}}}\) (前圏) → [005E]
- -\(\mathord {\textnormal {\textsf {RInv}}}\) → [004J]
- -\(\mathord {\textnormal {\textsf {Record}}}\mathopen {\{ \negmedspace |}x_{1}:A_{1},\dots ,x_{n}:A_{n}\mathclose {|\negmedspace \} }\) → [000O]
- -\(\mathord {\textnormal {\textsf {ReflGraph}}}(i)\) → [008C]
- -\(\mathord {\textnormal {\textsf {Retract}}}\) → [001J]
- -\(\mathord {\textnormal {\textsf {Ring}}}(i)\) → [004Y]
- -\(\mathbb {S}^{-1}\) → [003M]
- -\(\mathord {\textnormal {\textsf {Set}}}^{(\mathord {\textnormal {\textsf {Cat}}})}(i)\) → [006H]
- -\(\sum _{x:A}B\) → [000L]
- -\(\mathbb {S}^{n}\) → [003M]
- -\(\mathord {\textnormal {\textsf {Span}}}(i)\) → [007J]
- -\(\mathord {\textnormal {\textsf {SpanOver}}}\) → [007N]
- -\(\mathord {\textnormal {\textsf {Susp}}}\) → [007V]
- -\(\top \) → [0058]
- -\(\mathord {\textnormal {\textsf {Total}}}\) (余錐) → [007Q]
- -\(\mathord {\textnormal {\textsf {Total}}}\) (スパン) → [007P]
- -\(\mathord {\textnormal {\textsf {TruncLevel}}}\) → [003X]
- -\(\mathcal {U}(i)\) → [000E]
- -\(\mathcal {U}_{\bullet }(i)\) → [008A]
- -\(\mathord {\textnormal {\textsf {WLoc}}}\) → [0081]
- -\(\bot \) → [0058]
- -\(a\cdot f\) → [006F]
- -\(a.x\) → [000O]
- -\(a_{1}=a_{2}\) → [000P]
- -\(a:A\) → [0088]
- -\(\alpha \equiv \beta \) → [0086]
- -\(\alpha [x_{1}\mapsto a_{1},\dots ,x_{n}\mapsto a_{n}]\) → [0087]
- -\(\mathord {\textnormal {\textsf {ap}}}(f)\) → [001F]
- -\(\mathord {\textnormal {\textsf {apd}}}\) → [007I]
- -\(b_{1}=_{p}^{B}b_{2}\) → [003L]
- -\(\mathord {\textnormal {\textsf {cmp}}}\) → [007L]
- -\(\mathord {\textnormal {\textsf {codiag}}}\) → [0082]
- -\(\exists _{x:A}P(x)\) → [0058]
- -\(\mathord {\textnormal {\textsf {ext}}}\) (弱局所化) → [0081]
- -\(\mathord {\textnormal {\textsf {ext}}}\) → [001D]
- -\(f(a)\) (関数適用) → [000H]
- -\(f(a_{1},\dots ,a_{n})\) (関数適用) → [000J]
- -\(f(p)\) (関数を同一視に適用) → [001F]
- -\(\forall _{x:A}P(x)\) → [0058]
- -\(f\lbrace a\rbrace \) → [000Q]
- -\(f\sim g\) → [002I]
- -\(\mathord {\textnormal {\textsf {gen}}}\) (米田) → [006U]
- -\(\mathord {\textnormal {\textsf {glue}}}\) → [003R]
- -\(f_{2}\circ f_{1}\) (前層の射) → [006L]
- -\(f_{2}\circ f_{1}\) (前圏) → [005D]
- -\(g\circ f\) (関数) → [0011]
- -\(\mathord {\textnormal {\textsf {id}}}\) (前層の射) → [006L]
- -\(\mathord {\textnormal {\textsf {id}}}\) (自然変換) → [0067]
- -\(\mathord {\textnormal {\textsf {id}}}\) (前圏) → [005D]
- -\(\mathord {\textnormal {\textsf {in}}}\) (弱局所化) → [0081]
- -\(\mathord {\textnormal {\textsf {in}}}_{1}\) (ファイバー余積) → [003R]
- -\(\mathord {\textnormal {\textsf {in}}}_{1}\) (余積) → [002Z]
- -\(\mathord {\textnormal {\textsf {in}}}_{2}\) (ファイバー余積) → [003R]
- -\(\mathord {\textnormal {\textsf {in}}}_{2}\) (余積) → [002Z]
- -\(\mathord {\textnormal {\textsf {ind}}}_{+}\) → [002Z]
- -\(\mathord {\textnormal {\textsf {ind}}}_{\mathbin {{}_{.}\smash {+}_{.}}}\) → [003R]
- -\(\mathord {\mathord {\textnormal {\textsf {ind}}}_{\mathbin {{}_{.}\smash {+}_{.}}}\mathord {\textnormal {\textsf {-}}}\mathord {\textnormal {\textsf {glue}}}}\) → [003R]
- -\(\mathord {\textnormal {\textsf {ind}}}_{\mathbf {0}}\) → [0030]
- -\(\mathord {\textnormal {\textsf {ind}}}_{=}\) → [000P]
- -\(\mathord {\textnormal {\textsf {ind}}}_{\mathbb {N}}\) → [002V]
- -\(\mathord {\textnormal {\textsf {ind}}}_{{\| A\| }_{n}}\) → [0050]
- -\(\mathord {\textnormal {\textsf {is-ext}}}\) (弱局所化) → [0081]
- -\(\mathord {\langle n\rangle \mathord {\textnormal {\textsf {-Type}}}}(i)\) → [0053]
- -\({p}^{-1}\) → [001E]
- -\(\mathord {\textnormal {\textsf {pair}}}\) → [000L]
- -\(\mathord {\textnormal {\textsf {proj}}}_{1}\) → [000L]
- -\(\mathord {\textnormal {\textsf {proj}}}_{2}\) → [000L]
- -\(q\circ p\) (同一視) → [001E]
- -\(\mathord {\textnormal {\textsf {record}}}\mathopen {\{ \negmedspace |}x_{1}\equiv a_{1},\dots ,x_{n}\equiv a_{n}\mathclose {|\negmedspace \} }\) → [000O]
- -\(\mathord {\textnormal {\textsf {refl}}}\) → [000P]
- -\(\mathord {\textnormal {\textsf {succ}}}\) (自然数) → [002V]
- -\(\mathord {\textnormal {\textsf {succ}}}(i)\) (階数) → [000D]
- -\(t_{2}\circ t_{1}\) (自然変換) → [0067]
- -\(\mathord {\textnormal {\textsf {transport}}}\) → [001C]
- -\(x_{1}\cong x_{2}\) → [005F]
- -\(\lbrace x:A\mid B(x)\rbrace \) → [004A]
- -\({|a|}_{n}\) → [0050]
- -\({\| A\| }_{n}\) → [0050]
- -\(\lambda (x_{1},\dots ,x_{n}).b\) → [000J]
- -\(\lambda x.b\) → [000H]
- -\(\mathord {\star }\) → [000K]
- -\(\mathord {\textnormal {\textsf {よ}}}\) → [006P]