\(i\)を階数とする。型\(\mathord {\textnormal {\textsf {RingStr}}}(i):\mathcal {U}(\mathord {\textnormal {\textsf {succ}}}(i))\)を次のレコード型と定義する。
- -\(\mathord {\textnormal {\textsf {Carrier}}}:\mathcal {U}(i)\)
- -\(\mathord {\textnormal {\textsf {zero}}}:\mathord {\textnormal {\textsf {Carrier}}}\)
- -\(\mathord {\textnormal {\textsf {plus}}}:\mathord {\textnormal {\textsf {Carrier}}}\to \mathord {\textnormal {\textsf {Carrier}}}\to \mathord {\textnormal {\textsf {Carrier}}}\)
- -\(\mathord {\textnormal {\textsf {neg}}}:\mathord {\textnormal {\textsf {Carrier}}}\to \mathord {\textnormal {\textsf {Carrier}}}\)
- -\(\mathord {\textnormal {\textsf {one}}}:\mathord {\textnormal {\textsf {Carrier}}}\)
- -\(\mathord {\textnormal {\textsf {mul}}}:\mathord {\textnormal {\textsf {Carrier}}}\to \mathord {\textnormal {\textsf {Carrier}}}\to \mathord {\textnormal {\textsf {Carrier}}}\)
- -\(\_:\mathord {\textnormal {\textsf {IsSet}}}(R.\mathord {\textnormal {\textsf {Carrier}}})\)
- -\(\_:\prod _{x:R.\mathord {\textnormal {\textsf {Carrier}}}}R.\mathord {\textnormal {\textsf {plus}}}(R.\mathord {\textnormal {\textsf {zero}}},x)=x\)
- -\(\_:\prod _{x_{1},x_{2},x_{3}:R.\mathord {\textnormal {\textsf {Carrier}}}}R.\mathord {\textnormal {\textsf {plus}}}(R.\mathord {\textnormal {\textsf {plus}}}(x_{1},x_{2}),x_{3})=R.\mathord {\textnormal {\textsf {plus}}}(x_{1},R.\mathord {\textnormal {\textsf {plus}}}(x_{2},x_{3}))\)
- -\(\_:\prod _{x_{1},x_{2}:R.\mathord {\textnormal {\textsf {Carrier}}}}R.\mathord {\textnormal {\textsf {plus}}}(x_{1},x_{2})=R.\mathord {\textnormal {\textsf {plus}}}(x_{2},x_{1})\)
- -\(\_:\prod _{x}R.\mathord {\textnormal {\textsf {plus}}}(x,R.\mathord {\textnormal {\textsf {neg}}}(x))=R.\mathord {\textnormal {\textsf {zero}}}\)
- -\(\_:\prod _{x}R.\mathord {\textnormal {\textsf {mul}}}(R.\mathord {\textnormal {\textsf {one}}},x)=x\)
- -\(\_:\prod _{x}R.\mathord {\textnormal {\textsf {mul}}}(x,R.\mathord {\textnormal {\textsf {one}}})=x\)
- -\(\_:\prod _{x_{1},x_{2},x_{3}:R.\mathord {\textnormal {\textsf {Carrier}}}}R.\mathord {\textnormal {\textsf {mul}}}(R.\mathord {\textnormal {\textsf {mul}}}(x_{1},x_{2}),x_{3})=R.\mathord {\textnormal {\textsf {mul}}}(x_{1},R.\mathord {\textnormal {\textsf {mul}}}(x_{2},x_{3}))\)
- -\(\_:\prod _{x,y_{1},y_{2}:R.\mathord {\textnormal {\textsf {Carrier}}}}R.\mathord {\textnormal {\textsf {mul}}}(x,R.\mathord {\textnormal {\textsf {plus}}}(y_{1},y_{2}))=R.\mathord {\textnormal {\textsf {plus}}}(R.\mathord {\textnormal {\textsf {mul}}}(x,y_{1}),R.\mathord {\textnormal {\textsf {mul}}}(x,y_{2}))\)
- -\(\_:\prod _{x_{1},x_{2},y:R.\mathord {\textnormal {\textsf {Carrier}}}}R.\mathord {\textnormal {\textsf {mul}}}(R.\mathord {\textnormal {\textsf {plus}}}(x_{1},x_{2}),y)=R.\mathord {\textnormal {\textsf {plus}}}(R.\mathord {\textnormal {\textsf {mul}}}(x_{1},y),R.\mathord {\textnormal {\textsf {mul}}}(x_{2},y))\)
- -\(f:(\mathord {\textnormal {\textsf {proj}}}_{1}(A)).\mathord {\textnormal {\textsf {Carrier}}}\simeq (\mathord {\textnormal {\textsf {proj}}}_{1}(B)).\mathord {\textnormal {\textsf {Carrier}}}\)
- -\(\_:f((\mathord {\textnormal {\textsf {proj}}}_{1}(A)).\mathord {\textnormal {\textsf {zero}}})=(\mathord {\textnormal {\textsf {proj}}}_{1}(B)).\mathord {\textnormal {\textsf {zero}}}\)
- -\(\_:\prod _{x_{1},x_{2}}f((\mathord {\textnormal {\textsf {proj}}}_{1}(A)).\mathord {\textnormal {\textsf {plus}}}(x_{1},x_{2}))=(\mathord {\textnormal {\textsf {proj}}}_{1}(B)).\mathord {\textnormal {\textsf {plus}}}(f(x_{1}),f(x_{2}))\)
- -\(\_:\prod _{x}f((\mathord {\textnormal {\textsf {proj}}}_{1}(A)).\mathord {\textnormal {\textsf {neg}}}(x))=(\mathord {\textnormal {\textsf {proj}}}_{1}(B)).\mathord {\textnormal {\textsf {neg}}}(f(x))\)
- -\(\_:f((\mathord {\textnormal {\textsf {proj}}}_{1}(A)).\mathord {\textnormal {\textsf {one}}})=(\mathord {\textnormal {\textsf {proj}}}_{1}(B)).\mathord {\textnormal {\textsf {one}}}\)
- -\(\_:\prod _{x_{1},x_{2}}f((\mathord {\textnormal {\textsf {proj}}}_{1}(A)).\mathord {\textnormal {\textsf {mul}}}(x_{1},x_{2}))=(\mathord {\textnormal {\textsf {proj}}}_{1}(B)).\mathord {\textnormal {\textsf {mul}}}(f(x_{1}),f(x_{2}))\)