Mathieu Anel & André Joyal. Topo-logie. In Mathieu Anel & Gabriel Catren Ed. New Spaces in Mathematics: Formal and Conceptual Reflections, 1, 155--257. Cambridge University Press, Cambridge, 2021. https://doi.org/10.1017/9781108854429.007
[bibliography] Bibliography
J. W. Cartmell. Generalised algebraic theories and contextual categories. PhD Thesis, Oxford University, 1978.
Peter Dybjer. Internal Type Theory. In Stefano Berardi & Mario Coppo Ed. Types for Proofs and Programs (TYPES 1995), 120--134. Springer Berlin Heidelberg, 1996. https://doi.org/10.1007/3-540-61780-9_66
The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. http://homotopytypetheory.org/book/
Peter T. Johnstone. Sketches of an Elephant : A Topos Theory Compendium Volume 1. Oxford University Press, 2002.
Peter T. Johnstone. Sketches of an Elephant : A Topos Theory Compendium Volume 2. Oxford University Press, 2002.
Jacob Lurie. Higher Topos Theory. Princeton University Press, 2009. https://www.math.ias.edu/~lurie/papers/HTT.pdf
Saunders Mac Lane & Ieke Moerdijk. Sheaves in Geometry and Logic. Springer New York, 1992. https://doi.org/10.1007/978-1-4612-0927-0
Hoang Kim Nguyen & Taichi Uemura. \(\infty \)-type theories. 2022. https://arxiv.org/abs/2205.00798v1
Emily Riehl & Michael Shulman. A type theory for synthetic \(\infty \)-categories. Higher Structures, 1(1):147--224, 2017. https://higher-structures.math.cas.cz/api/files/issues/Vol1Iss1/RiehlShulman
Egbert Rijke. The join construction. 2017. https://arxiv.org/abs/1701.07538v1
Egbert Rijke & Michael Shulman & Bas Spitters. Modalities in homotopy type theory. Logical Methods in Computer Science, 16(1):Paper No. 2, 79, 2020. https://doi.org/10.23638/LMCS-16(1:2)2020