Synthetic topos theory

[000A] Étale morphisms

Étale morphisms play the central role in topos theory. They are defined in terms of slice categories.

Recall that slices of lex categories coclassify global sections.

[000B] Definition

Let \(C\) be a category that has finite limits and let \(x:C\) be an object. Let \({x}^{*}:C\rightarrow C/x\) denote the pullback functor along the morphism from \(x\) to the final object. We define a morphism in \(C/x\)

\(\mathord {\textnormal {\textsf {d}}}_{x}:\mathord {\textnormal {\textsf {1}}}\rightarrow {x}^{*}(x)\)
to be the one represented by the diagonal morphism \(x\rightarrow x\times x\) in \(C\).

[000C] Exercise

Let \(C\) be a category that has finite limits and let \(x:C\) be an object. Then the pair \(({x}^{*},\mathord {\textnormal {\textsf {d}}}_{x})\) has the following universal property: For any category \(D\) that has finite limits, the functor

\(G\mapsto (G\circ {x}^{*},G(\mathord {\textnormal {\textsf {d}}}_{x})):\mathord {\textnormal {\textsf {Lex}}}(C/x,D)\rightarrow (F:\mathord {\textnormal {\textsf {Lex}}}(C,D))\times (\mathord {\textnormal {\textsf {1}}}\rightarrow F(x))\)
is an equivalence. Moreover, the inverse of this functor at \((F,u)\) is \({u}^{*}\circ (F/x)\).

The same is true for lex cocomplete categories.

[000D] Proposition

Let \(U\) be a universe, let \(C\) be a lex \(U\)-cocomplete category, and let \(x:C\) be an object. Then the pair \(({x}^{*},\mathord {\textnormal {\textsf {d}}}_{x})\) has the following universal property: For any lex \(U\)-cocomplete category \(D\), the equivalence given in [000C] restricts to an equivalence

\(\mathord {\textnormal {\textsf {LexCocomp}}}_{U}(C/x,D)\simeq (F:\mathord {\textnormal {\textsf {LexCocomp}}}_{U}(C,D))\times (\mathord {\textnormal {\textsf {1}}}\rightarrow F(x))\).

Proof

This follows from the fact that, for any lex \(U\)-cocomplete category \(C\) and any morphism \(u:x\rightarrow y\) in \(C\), the pullback functor \({u}^{*}:C/y\rightarrow C/x\) is a morphism of lex \(U\)-cocomplete categories.

There is a generic slice category.

[000F] Definition

Let \(U\) be a universe. We define \({\langle \mathord {\textnormal {\textsf {w}}}\rangle }_{\mathord {\textnormal {\textsf {LexCocomp}}}_{U}}\) to be the free lex \(U\)-cocomplete category generated by one object \(\mathord {\textnormal {\textsf {w}}}\). That is, for any lex \(U\)-cocomplete category \(C\), the functor

\(F\mapsto F(\mathord {\textnormal {\textsf {w}}}):\mathord {\textnormal {\textsf {LexCocomp}}}_{U}({\langle \mathord {\textnormal {\textsf {w}}}\rangle }_{\mathord {\textnormal {\textsf {LexCocomp}}}_{U}},C)\rightarrow C\)
is an equivalence.

[000G] Proposition

Let \(U\) be a universe, let \(V\) be a universe strictly greater than \(U\), let \(C\) be a \(V\)-small lex \(U\)-cocomplete category, and let \(x:C\) be an object. Let \(F:{\langle \mathord {\textnormal {\textsf {w}}}\rangle }_{\mathord {\textnormal {\textsf {LexCocomp}}}_{U}}\rightarrow C\) denote the morphism of lex \(U\)-cocomplete categories corresponding to \(x\). Then \({x}^{*}:C\rightarrow C/x\) is the pushout in \(\mathord {\textnormal {\textsf {LexCocomp}}}(U,V)\) of \({\mathord {\textnormal {\textsf {w}}}}^{*}:{\langle \mathord {\textnormal {\textsf {w}}}\rangle }_{\mathord {\textnormal {\textsf {LexCocomp}}}_{U}}\rightarrow {\langle \mathord {\textnormal {\textsf {w}}}\rangle }_{\mathord {\textnormal {\textsf {LexCocomp}}}_{U}}/\mathord {\textnormal {\textsf {w}}}\) along \(F\).

Proof

One can check the universal property of the pushout using [000D].

[000H] Proposition

Let \(U\) be a universe and let \(V\) be a universe strictly greater than \(U\). Then the morphism \({\mathord {\textnormal {\textsf {w}}}}^{*}:{\langle \mathord {\textnormal {\textsf {w}}}\rangle }_{\mathord {\textnormal {\textsf {LexCocomp}}}_{U}}\rightarrow {\langle \mathord {\textnormal {\textsf {w}}}\rangle }_{\mathord {\textnormal {\textsf {LexCocomp}}}_{U}}/\mathord {\textnormal {\textsf {w}}}\) in \(\mathord {\textnormal {\textsf {LexCocomp}}}(U,V)\) is coexponentiable. That is, the pushout functor along \({\mathord {\textnormal {\textsf {w}}}}^{*}\) has a left adjoint.

Proof

By [000G], the pushout along \({\mathord {\textnormal {\textsf {w}}}}^{*}\) is computed by slicing. Since slicing commutes with limits and since the pushout functor commutes with colimits, the adjoint functor theorem applies.

[000X] Proposition

Let \(U\) be a universe and let \(V\) be a universe strictly greater than \(U\). Then the morphism \({\mathord {\textnormal {\textsf {w}}}}^{*}:{\langle \mathord {\textnormal {\textsf {w}}}\rangle }_{\mathord {\textnormal {\textsf {LexCocomp}}}_{U}}\rightarrow {\langle \mathord {\textnormal {\textsf {w}}}\rangle }_{\mathord {\textnormal {\textsf {LexCocomp}}}_{U}}/\mathord {\textnormal {\textsf {w}}}\) in \(\mathord {\textnormal {\textsf {LexCocomp}}}(U,V)\) is a co-left-fibration.

Proof

This follows from [000D] because, for any lex \(U\)-cocomplete category \(C\), the projection \((F:\mathord {\textnormal {\textsf {LexCocomp}}}_{U}({\langle \mathord {\textnormal {\textsf {w}}}\rangle }_{\mathord {\textnormal {\textsf {LexCocomp}}}_{U}},C))\times (\mathord {\textnormal {\textsf {1}}}\rightarrow F(\mathord {\textnormal {\textsf {w}}}))\rightarrow \mathord {\textnormal {\textsf {LexCocomp}}}_{U}({\langle \mathord {\textnormal {\textsf {w}}}\rangle }_{\mathord {\textnormal {\textsf {LexCocomp}}}_{U}},C)\) is a left fibration.

A morphism of logoses is étale if it is equivalent to \({x}^{*}:C\rightarrow C/x\) for some \(x\). We see that \(x\) is unique.

[0010] Definition

Let \(U\) be a universe, let \(V\) be a universe strictly greater than \(U\), and let \(C\) be a \(V\)-small lex \(U\)-cocomplete category. We define a functor

\(\mathord {\textnormal {\textsf {E}}}_{C}:{C}^{\mathord {\textnormal {\textsf {op}}}}\rightarrow \mathord {\textnormal {\textsf {LexCocomp}}}(U,V)\backslash C\)
by \(\mathord {\textnormal {\textsf {E}}}_{C}(x)=({x}^{*}:C\rightarrow C/x)\).

[000I] Proposition

Let \(U\) be a universe, let \(V\) be a universe strictly greater than \(U\), and let \(C\) be a \(V\)-small lex \(U\)-cocomplete category. The functor \(\mathord {\textnormal {\textsf {E}}}_{C}:{C}^{\mathord {\textnormal {\textsf {op}}}}\rightarrow \mathord {\textnormal {\textsf {LexCocomp}}}(U,V)\backslash C\) is fully faithful.

Proof

Let \(x,y:C\) be objects. By [000D], the category of morphisms \({y}^{*}\rightarrow {x}^{*}\) in \(\mathord {\textnormal {\textsf {LexCocomp}}}(U,V)\backslash C\) is equivalent to the discrete category of morphisms \(\mathord {\textnormal {\textsf {1}}}\rightarrow {x}^{*}(y)\) in \(C/x\). But the latter is equivalent to the discrete category of morphisms \(x\rightarrow y\) in \(C\).

[0011] Proposition

Let \(U\) be a universe, let \(V\) be a universe strictly greater than \(U\), and let \(C\) be a \(V\)-small lex \(U\)-cocomplete category. Then the functor \(\mathord {\textnormal {\textsf {E}}}_{C}:{C}^{\mathord {\textnormal {\textsf {op}}}}\rightarrow \mathord {\textnormal {\textsf {LexCocomp}}}(U,V)\backslash C\) preserves \(U\)-small limits.

Proof

Observe that limits in \(\mathord {\textnormal {\textsf {LexCocomp}}}(U,V)\) are computed in the category of \(V\)-small categories. Then the claim is a consequence of descent.

[000V] Definition

Let \(U\) be a universe and let \(V\) be a universe strictly greater than \(U\). We say a morphism \(f:C\rightarrow D\) in \(\mathord {\textnormal {\textsf {LexCocomp}}}(U,V)\) is étale if it is in the image of the functor \(\mathord {\textnormal {\textsf {E}}}_{C}:{C}^{\mathord {\textnormal {\textsf {op}}}}\rightarrow \mathord {\textnormal {\textsf {LexCocomp}}}(U,V)\backslash C\).

Let us reverse morphisms.

[000K] Definition

Let \(U\) be a universe. We define a morphism \(\mathord {\textnormal {\textsf {p}}}:\mathbb {A}_{\bullet }\rightarrow \mathbb {A}\) in \(\mathord {\textnormal {\textsf {Topos}}}(U)\) to be the one sent by \(\mathord {\textnormal {\textsf {Sh}}}\) to \({\mathord {\textnormal {\textsf {w}}}}^{*}:{\langle \mathord {\textnormal {\textsf {w}}}\rangle }_{\mathord {\textnormal {\textsf {LexCocomp}}}_{U}}\rightarrow {\langle \mathord {\textnormal {\textsf {w}}}\rangle }_{\mathord {\textnormal {\textsf {LexCocomp}}}_{U}}/\mathord {\textnormal {\textsf {w}}}\).

[000Z] Proposition

Let \(U\) be a universe. Then \(\mathbb {A}\) represents the functor \(\mathord {\textnormal {\textsf {Sh}}}:{(\mathord {\textnormal {\textsf {Topos}}}(U))}^{\mathord {\textnormal {\textsf {op}}}}\rightarrow \mathord {\textnormal {\textsf {Logos}}}(U)\). That is, we have a natural equivalence \(\mathord {\textnormal {\textsf {Hom}}}_{\mathord {\textnormal {\textsf {Topos}}}(U)}(X,\mathbb {A})\simeq \mathord {\textnormal {\textsf {Sh}}}(X)\).

Proof

This is by definition.

[000L] Proposition

Let \(U\) be a universe. Then the morphism \(\mathord {\textnormal {\textsf {p}}}:\mathbb {A}_{\bullet }\rightarrow \mathbb {A}\) in \(\mathord {\textnormal {\textsf {Topos}}}(U)\) is exponentiable.

Proof

By [000H].

[000Y] Proposition

Let \(U\) be a universe. Then the morphism \(\mathord {\textnormal {\textsf {p}}}:\mathbb {A}_{\bullet }\rightarrow \mathbb {A}\) in \(\mathord {\textnormal {\textsf {Topos}}}(U)\) is a left fibration.

Proof

By [000X].

[000M] Proposition

Let \(U\) be a universe. Then the morphism \(\mathord {\textnormal {\textsf {p}}}:\mathbb {A}_{\bullet }\rightarrow \mathbb {A}\) in \(\mathord {\textnormal {\textsf {Topos}}}(U)\) satisfies directed univalence. That is, for any object \(X:\mathord {\textnormal {\textsf {Topos}}}(U)\), the functor

\(\mathord {\textnormal {\textsf {Hom}}}_{\mathord {\textnormal {\textsf {Topos}}}(U)}(X,\mathbb {A})\rightarrow \mathord {\textnormal {\textsf {Topos}}}(U)/X\)
defined by the pullback of the left fibration \(\mathord {\textnormal {\textsf {p}}}:\mathbb {A}_{\bullet }\rightarrow \mathbb {A}\) is fully faithful.

Proof

By [000I].

[000N] Definition

Let \(U\) be a universe. We say a morphism \(f:Y\rightarrow X\) in \(\mathord {\textnormal {\textsf {Topos}}}(U)\) is étale if there exists a (necessarily unique by [000M]) pullback square from \(f\) to \(\mathord {\textnormal {\textsf {p}}}:\mathbb {A}_{\bullet }\rightarrow \mathbb {A}\).

[000S] Proposition

Let \(U\) be a universe. Then étale morphisms in \(\mathord {\textnormal {\textsf {Topos}}}(U)\) are closed under pullback.

Proof

This is by definition.

[000P] Proposition

Let \(U\) be a universe. Then a morphism \(f:Y\rightarrow X\) in \(\mathord {\textnormal {\textsf {Topos}}}(U)\) is étale if and only if the morphism of lex \(U\)-cocomplete categories \({f}^{*}:\mathord {\textnormal {\textsf {Sh}}}(X)\rightarrow \mathord {\textnormal {\textsf {Sh}}}(Y)\) is étale.

Proof

By [000G].

[000Q] Proposition

Let \(U\) be a universe. Then all the identity morphisms in \(\mathord {\textnormal {\textsf {Topos}}}(U)\) are étale.

Proof

Let \(X\) be a \(U\)-topos. We have the equivalence \(\mathord {\textnormal {\textsf {Sh}}}(X)\simeq \mathord {\textnormal {\textsf {Sh}}}(X)/\mathord {\textnormal {\textsf {1}}}\). Then [000P] applies.

[000R] Proposition

Let \(U\) be a universe. Then étale morphisms in \(\mathord {\textnormal {\textsf {Topos}}}(U)\) are closed under composition.

Proof

Let \(X\) be a \(U\)-topos, let \(a:\mathord {\textnormal {\textsf {Sh}}}(X)\) be an object, and let \(s:\mathord {\textnormal {\textsf {Sh}}}(X)/a\) be an object. Let \(u:b\rightarrow a\) denote the morphism that represents \(s\). We have the equivalence \((\mathord {\textnormal {\textsf {Sh}}}(X)/a)/s\simeq \mathord {\textnormal {\textsf {Sh}}}(X)/b\). Then [000P] applies.

[000T] Lemma

Let \(U\) be a universe. Then étale morphisms in \(\mathord {\textnormal {\textsf {Topos}}}(U)\) has the left cancellation property. That is, for morphisms \(f:Y\rightarrow X\) and \(g:Z\rightarrow Y\) in \(\mathord {\textnormal {\textsf {Topos}}}(U)\), if \(f\) and \(f\circ g\) are étale, then so is \(g\).

Proof

Let \(X\) be a \(U\)-topos, let \(a,b:\mathord {\textnormal {\textsf {Sh}}}(X)\) be objects, and let \(F:\mathord {\textnormal {\textsf {Sh}}}(X)/a\rightarrow \mathord {\textnormal {\textsf {Sh}}}(X)/b\) be a morphism in \(\mathord {\textnormal {\textsf {Logos}}}(U)\backslash \mathord {\textnormal {\textsf {Sh}}}(X)\). By [000I], \(F\) is equivalent to the pullback functor \({u}^{*}\) for some morphism \(u:b\rightarrow a\). Let \(s:\mathord {\textnormal {\textsf {Sh}}}(X)/a\) be the object represented by \(u\). We have the equivalence \(\mathord {\textnormal {\textsf {Sh}}}(X)/b\simeq (\mathord {\textnormal {\textsf {Sh}}}(X)/a)/s\). Then [000P] applies.

[000U] Proposition

Let \(U\) be a universe. Then étale morphisms in \(\mathord {\textnormal {\textsf {Topos}}}(U)\) are closed under diagonal. That is, if a morphism \(f:Y\rightarrow X\) in \(\mathord {\textnormal {\textsf {Topos}}}(U)\) is étale, then so is the diagonal morphism \(Y\rightarrow Y\mathbin {{}_{f}\mathord {\times _{f}}}Y\).

Proof

The diagonal morphism in question is a section of the first (or second) projection \(Y\mathbin {{}_{f}\mathord {\times _{f}}}Y\rightarrow Y\). By [000T] and [000Q], it suffices to show that the first projection is étale, but this follows from [000S].

[000W] Definition

Let \(U\) be a universe and let \(X\) be a \(U\)-topos. We define \(\mathord {\textnormal {\textsf {Etale}}}(X)\) to be the full subcategory of \(\mathord {\textnormal {\textsf {Topos}}}(U)/X\) spanned by the étale morphisms with codomain \(X\).

[0012] Proposition

Let \(U\) be a universe and let \(X\) be a \(U\)-topos. Then the functor \(\mathord {\textnormal {\textsf {E}}}_{\mathord {\textnormal {\textsf {Sh}}}(X)}:{(\mathord {\textnormal {\textsf {Sh}}}(X))}^{\mathord {\textnormal {\textsf {op}}}}\rightarrow \mathord {\textnormal {\textsf {Logos}}}(U)\backslash \mathord {\textnormal {\textsf {Sh}}}(X)\) restricts to an equivalence \(\mathord {\textnormal {\textsf {Sh}}}(X)\simeq \mathord {\textnormal {\textsf {Etale}}}(X)\).

Proof

By definition.

[0013] Proposition

Let \(U\) be a universe. Then, for any \(U\)-topos \(X\), the category \(\mathord {\textnormal {\textsf {Etale}}}(X)\) has \(U\)-small colimits. Moreover, for any morphism \(f:X\rightarrow Y\) in \(\mathord {\textnormal {\textsf {Topos}}}(U)\), the pullback functor \({f}^{*}:\mathord {\textnormal {\textsf {Etale}}}(Y)\rightarrow \mathord {\textnormal {\textsf {Etale}}}(X)\) commutes with \(U\)-small colimits.

Proof

By [0012].

[0014] Proposition

Let \(U\) be a universe and let \(X\) be a \(U\)-topos. Then the inclusion \(\mathord {\textnormal {\textsf {Etale}}}(X)\rightarrow \mathord {\textnormal {\textsf {Topos}}}(U)/X\) preserves \(U\)-small colimits.

Proof

By [0011].

[0017] Definition

Let \(U\) be a universe, let \(I\) be a \(U\)-small category, and let \(X:I\rightarrow \mathord {\textnormal {\textsf {Topos}}}(U)\) be a functor. Suppose that \(X\) factors through the domain projection \(\mathord {\textnormal {\textsf {Etale}}}(Y)\rightarrow \mathord {\textnormal {\textsf {Topos}}}(U)\) for some \(U\)-topos \(Y\). By [0013] and [0014], the colimit of \(X\) exists. We call colimits obtained in this way étale colimits. Limits in \(\mathord {\textnormal {\textsf {Logos}}}(U)\) that are étale colimits in \(\mathord {\textnormal {\textsf {Topos}}}(U)\) are called étale limits.