Synthetic topos theory
[000K] Definition

Let \(U\) be a universe. We define a morphism \(\mathord {\textnormal {\textsf {p}}}:\mathbb {A}_{\bullet }\rightarrow \mathbb {A}\) in \(\mathord {\textnormal {\textsf {Topos}}}(U)\) to be the one sent by \(\mathord {\textnormal {\textsf {Sh}}}\) to \({\mathord {\textnormal {\textsf {w}}}}^{*}:{\langle \mathord {\textnormal {\textsf {w}}}\rangle }_{\mathord {\textnormal {\textsf {LexCocomp}}}_{U}}\rightarrow {\langle \mathord {\textnormal {\textsf {w}}}\rangle }_{\mathord {\textnormal {\textsf {LexCocomp}}}_{U}}/\mathord {\textnormal {\textsf {w}}}\).