Synthetic topos theory

[001L] A universal property of Topos(1)(U)\mathord {\textnormal {\textsf {Topos}}}^{(1)}(U)

The following observation is not directly used elsewhere but indicates that étale morphisms are the characteristic of topos theory and provides inspiration for the design of a type theory of toposes.

[001M] Definition

Let UU be a universe. A category with UU-étale morphisms CC consists of the following data.

  • -A category C.CarrierC.\mathord {\textnormal {\textsf {Carrier}}} with UU-small limits.
  • -A univalent morphism C.p:C.AC.AC.\mathord {\textnormal {\textsf {p}}}:C.\mathbb {A}_{\bullet }\rightarrow C.\mathbb {A} in C.CarrierC.\mathord {\textnormal {\textsf {Carrier}}} called the universal étale morphism. Pullbacks of C.pC.\mathord {\textnormal {\textsf {p}}} are called étale morphisms. For an object x:C.Carrierx:C.\mathord {\textnormal {\textsf {Carrier}}}, let Etale(x)\mathord {\textnormal {\textsf {Etale}}}(x) denote the full subcategory of C.Carrier/xC.\mathord {\textnormal {\textsf {Carrier}}}/x spanned by the étale morphisms with codomain xx.
  • -All the identity morphisms in C.CarrierC.\mathord {\textnormal {\textsf {Carrier}}} are étale, étale morphisms are closed under composition, and étale morphisms are closed under diagonal.
  • -For every object x:C.Carrierx:C.\mathord {\textnormal {\textsf {Carrier}}}, the category Etale(x)\mathord {\textnormal {\textsf {Etale}}}(x) has UU-small colimits preserved by the inclusion Etale(x)C.Carrier/x\mathord {\textnormal {\textsf {Etale}}}(x)\rightarrow C.\mathord {\textnormal {\textsf {Carrier}}}/x.
  • -For every morphism f:xyf:x\rightarrow y in C.CarrierC.\mathord {\textnormal {\textsf {Carrier}}}, the pullback functor f:Etale(y)Etale(x){f}^{*}:\mathord {\textnormal {\textsf {Etale}}}(y)\rightarrow \mathord {\textnormal {\textsf {Etale}}}(x) preserves UU-small colimits.
  • -C.pC.\mathord {\textnormal {\textsf {p}}} is exponentiable.
A morphism of categories with UU-étale morphisms is a structure-preserving functor. Note that preservation of universal étale morphism is a proposition because of univalence.

[001N] Exercise

Let UU be a universe. Then Topos(1)(U)\mathord {\textnormal {\textsf {Topos}}}^{(1)}(U) is the initial category with UU-étale morphisms, where the universal étale morphism in Topos(1)(U)\mathord {\textnormal {\textsf {Topos}}}^{(1)}(U) is p:AA\mathord {\textnormal {\textsf {p}}}:\mathbb {A}_{\bullet }\rightarrow \mathbb {A} defined in [000K].