- -\({f}_{!}\) → [003P]
- -\({f}^{*}\) → [003I]
- -\({X}^{*}(Z)\) → [002X]
- -\(T/(x:A)\) → [002U]
- -\(1\) → [002F]
- -\(a_{1}\Rightarrow a_{2}\) → [0038]
- -\({\langle n\rangle }_{\mathord {\textnormal {\textsf {LO}}}}\) → [0044]
- -\({f}_{*}\) → [003L]
- -\(\Delta _{X}\) → [003K]
- -\(\Gamma _{X}\) → [003K]
- -\({\mathopen {[\negthinspace [}Z\mathclose {]\negthinspace ]}}^{X}\) → [003E]
- -\(A\mathrel {@}X\) → [004D]
- -\(\mathbb {A}^{(V)}\) → [001I]
- -\(\mathbb {A}\) → [000K]
- -\(\mathbb {A}_{\bullet }\) → [000K]
- -\(\mathord {\textnormal {\textsf {C}}}_{T}\) → [002Q]
- -\(\mathord {\textnormal {\textsf {Ctx}}}_{T}(i)\) → [002C]
- -\(\Delta \lbrack n\rbrack \) → [0049]
- -\(\Delta \lbrack n\rbrack \) → [0058]
- -\(\mathord {\textnormal {\textsf {D}}}_{T}(\Gamma \vdash A)\) → [002C]
- -\(\Delta _{I}\lbrack n\rbrack \) → [0055]
- -\(\mathord {\textnormal {\textsf {D}}}_{T}(\Gamma \vdash \mathord {\textnormal {\textsf {Type}}}(i))\) → [002C]
- -\(\mathcal {E}(i)\) → [002A]
- -\(\mathord {\textnormal {\textsf {E}}}_{C}\) → [0010]
- -\(\mathord {\textnormal {\textsf {Etale}}}(X)\) → [000W]
- -\(\mathord {\textnormal {\textsf {GS}}}_{T}\) → [002P]
- -\(\mathord {\textnormal {\textsf {Glob}}}_{T_{1}}(T_{2})\) → [002T]
- -\(\mathbb {I}\) → [0057]
- -\(\mathord {\textnormal {\textsf {Q}}}\) → [0053]
- -\(\mathord {\textnormal {\textsf {LAM}}}\) → [004K]
- -\(\mathord {\textnormal {\textsf {Level}}}\) → [001V]
- -\(\mathord {\textnormal {\textsf {LexCocomp}}}(U,V)\) → [0003]
- -\(\mathord {\textnormal {\textsf {LexCocomp}}}_{U}(C,D)\) → [000E]
- -\(\mathord {\textnormal {\textsf {Logos}}}(U)\) → [0004]
- -\(\mathord {\textnormal {\textsf {Model}}}^{X}(A)\) → [003C]
- -\(\prod _{x:A}B(x)\) → [0025]
- -\(\Omega \) → [004N]
- -\(\mathord {\textnormal {\textsf {R}}}_{\bullet }(C)\) → [0050]
- -\(\mathord {\textnormal {\textsf {R}}}(C)\) → [0050]
- -\(\mathcal {S}(X,i)\) → [003B]
- -\(\mathord {\textnormal {\textsf {Self}}}\) → [002N]
- -\(\mathord {\textnormal {\textsf {Sh}}}(X)\) → [002K]
- -\(\mathord {\textnormal {\textsf {Sh}}}\) → [000J]
- -\(\mathord {\textnormal {\textsf {Sh}}}(\mathord {\textnormal {\textsf {Topos}}}^{(1)}(U),V)\) → [0019]
- -\(\mathord {\textnormal {\textsf {Sp}}}\) → [002B]
- -\(\mathord {\textnormal {\textsf {SubTop}}}\) → [004H]
- -\(\mathord {\textnormal {\textsf {Topos}}}(U)\) → [0005]
- -\(\mathord {\textnormal {\textsf {Topos}}}^{(1)}(U)\) → [0018]
- -\(\mathcal {E}\) → [003W]
- -\(\mathord {\textnormal {\textsf {Type}}}(i)\) → [001Z]
- -\(\mathcal {U}(i)\) → [0023]
- -\(\mathop {\Uparrow ^{V}}C\) → [001E]
- -\(\coprod _{x:A}B(x)\) → [0026]
- -\(\mathord {\textnormal {\textsf {d}}}_{x}\) → [000B]
- -\(\mathord {\textnormal {\textsf {e}}}_{a}\) → [0047]
- -\({f}^{*}\)
(inverse image) → [000O]
- -\(\mathord {\textnormal {\textsf {in}}}_{a}(b)\) → [0026]
- -\(i_{1}\le i_{2}\) → [001W]
- -\(\mathord {\textnormal {\textsf {m}}}_{X}\) → [004I]
- -\(\mathord {\textnormal {\textsf {p}}}\) → [000K]
- -\(x\mapsto b(x)\) → [0025]
- -\(\rho (C)\) → [0050]
- -\(f(a)\) → [0025]
- -\(\mathord {\textnormal {\textsf {w}}}_{X}\) → [002Y]