Synthetic topos theory
[002P] Definition

Let \(T_{1}\) be a base type theory and let \(T_{2}\) be a type theory internal to \(T_{1}\). We work in \(T_{1}\). We define a translation

\(\mathord {\textnormal {\textsf {GS}}}_{T_{2}}:T_{2}\rightarrow \mathord {\textnormal {\textsf {Self}}}\)
called the global section translation as follows.
  • -Let \(i:\mathord {\textnormal {\textsf {Level}}}\) and let \(\Gamma :\mathord {\textnormal {\textsf {Ctx}}}_{T_{2}}(i)\). Then \(\mathord {\textnormal {\textsf {GS}}}_{T_{2}}(\Gamma )\equiv \mathord {\textnormal {\textsf {Hom}}}_{\mathord {\textnormal {\textsf {Ctx}}}_{T_{2}}(i)}(\epsilon ,\Gamma )\).
  • -Let \(i:\mathord {\textnormal {\textsf {Level}}}\), let \(\Gamma :\mathord {\textnormal {\textsf {Ctx}}}_{T_{2}}(i)\), and let \(A:\mathord {\textnormal {\textsf {D}}}_{T_{2}}(\Gamma \vdash \mathord {\textnormal {\textsf {Type}}}(i))\). Then \(\mathord {\textnormal {\textsf {GS}}}_{T_{2}}(A)\equiv x\mapsto \mathord {\textnormal {\textsf {D}}}_{T_{2}}({}\vdash A(x))\).
  • -Let \(i:\mathord {\textnormal {\textsf {Level}}}\), let \(\Gamma :\mathord {\textnormal {\textsf {Ctx}}}_{T_{2}}(i)\), let \(A:\mathord {\textnormal {\textsf {D}}}_{T_{2}}(\Gamma \vdash \mathord {\textnormal {\textsf {Type}}}(i))\), and let \(a:\mathord {\textnormal {\textsf {D}}}_{T_{2}}(\Gamma \vdash A)\). Then \(\mathord {\textnormal {\textsf {GS}}}_{T_{2}}(a)\equiv x\mapsto a(x)\).