Synthetic topos theory

[003A] The category of sheaves

Sheaves on a topos are identified with morphisms to the universe of étale types.

[003B] Definition

Let \(T\) be a base type theory. We work in \(T\). Let \(i:\mathord {\textnormal {\textsf {Level}}}\) and let \(X\) be a topos. We define the category \(\mathcal {S}(X,i)\) of sheaves on \(X\) of level \(i\) to be \(\mathord {\textnormal {\textsf {D}}}_{\mathord {\textnormal {\textsf {Sp}}}}(x:X\vdash \mathcal {E}(i))\).

[003G] Observation

Let \(T\) be a type theory. We work in \(T\). Let \(i:\mathord {\textnormal {\textsf {Level}}}\) and let \(X\) be a topos. Then we have the following equivalences.

\(\mathcal {S}(X,i)\)\(\simeq \) {[003F]}\(\mathord {\textnormal {\textsf {Model}}}^{X}(\mathcal {E}(i))\)\(\simeq \) {[002S]}\(\mathord {\textnormal {\textsf {D}}}_{\mathord {\textnormal {\textsf {Sh}}}(X)}({}\vdash \mathcal {U}(i))\)