Synthetic topos theory
[003F] Observation

Let \(T\) be a base type theory. We work in \(T\). Let \(i:\mathord {\textnormal {\textsf {Level}}}\), let \(A:\mathord {\textnormal {\textsf {D}}}_{\mathord {\textnormal {\textsf {Sp}}}}({}\vdash \mathord {\textnormal {\textsf {Type}}}(\mathord {\textnormal {\textsf {succ}}}(i)))\), and let \(X\) be a topos. Then we have the following equivalences.

\(\mathord {\textnormal {\textsf {D}}}_{\mathord {\textnormal {\textsf {Sp}}}}(x:X\vdash A)\)\(\simeq \) {[002Y]}\(\mathord {\textnormal {\textsf {D}}}_{\mathord {\textnormal {\textsf {Glob}}}_{\mathord {\textnormal {\textsf {Sh}}}(X)}(\mathord {\textnormal {\textsf {Sp}}})}({}\vdash {X}^{*}(A))\)\(\simeq \) {definition}\(\mathord {\textnormal {\textsf {D}}}_{\mathord {\textnormal {\textsf {Sh}}}(X)}({}\vdash \mathord {\textnormal {\textsf {D}}}_{\mathord {\textnormal {\textsf {Sp}}}}({}\vdash {X}^{*}(A)))\)\(\simeq \) {definition}\(\mathord {\textnormal {\textsf {D}}}_{\mathord {\textnormal {\textsf {Sh}}}(X)}({}\vdash \mathord {\textnormal {\textsf {GS}}}_{\mathord {\textnormal {\textsf {Sp}}}}({X}^{*}(A)))\)\(\simeq \) {definition}\(\mathord {\textnormal {\textsf {Model}}}^{X}(A)\)