Let \(T\) be a base type theory.
We work in \(T\).
Let \(i:\mathord {\textnormal {\textsf {Level}}}\),
let \(X_{1}\) and \(X_{2}\) be
toposes,
and let \(f:X_{1}\rightarrow X_{2}\)
be a morphism.
We define the
direct image functor
\({f}_{*}:\mathcal {S}(X_{1},i)\rightarrow \mathcal {S}(X_{2},i)\)
by the following composite.
\(\mathcal {S}(X_{1},i)\)\(\simeq \) {fibrant replacement}\(\mathcal {S}((y:X_{2})\times \mathord {\textnormal {\textsf {Fib}}}(f,y),i)\)\(\simeq \) {[003L]}\(\mathord {\textnormal {\textsf {D}}}_{\mathord {\textnormal {\textsf {Sh}}}(X_{2})}({}\vdash \mathcal {S}(\mathord {\textnormal {\textsf {Fib}}}(f,\mathord {\textnormal {\textsf {w}}}_{X_{2}}),i))\)\(\rightarrow \) {\(\Gamma _{\mathord {\textnormal {\textsf {Fib}}}(f,\mathord {\textnormal {\textsf {w}}}_{X_{2}})}\)}\(\mathord {\textnormal {\textsf {D}}}_{\mathord {\textnormal {\textsf {Sh}}}(X_{2})}({}\vdash \mathcal {U}(i))\)\(\simeq \) {[003G]}\(\mathcal {S}(X_{2},i)\)