Synthetic topos theory
[002Q] Definition

Let T1T_{1} be a base type theory and let T2T_{2} be a type theory internal to T1T_{1}. We work in T1T_{1}. Suppose that T2T_{2} has the unit type and coproducts. Let i:Leveli:\mathord {\textnormal {\textsf {Level}}}. We define a function

CT2:U(i)DT2(Type(i))\mathord {\textnormal {\textsf {C}}}_{T_{2}}:\mathcal {U}(i)\rightarrow \mathord {\textnormal {\textsf {D}}}_{T_{2}}({}\vdash \mathord {\textnormal {\textsf {Type}}}(i))
by CT2(A)_:A1\mathord {\textnormal {\textsf {C}}}_{T_{2}}(A)\equiv \coprod _{\_:A}\mathord {\textnormal {\textsf {1}}}