[002Q] DefinitionLet T1T_{1}T1 be a base type theory and let T2T_{2}T2 be a type theory internal to T1T_{1}T1. We work in T1T_{1}T1. Suppose that T2T_{2}T2 has the unit type and coproducts. Let i:Leveli:\mathord {\textnormal {\textsf {Level}}}i:Level. We define a function CT2:U(i)→DT2(⊢Type(i))\mathord {\textnormal {\textsf {C}}}_{T_{2}}:\mathcal {U}(i)\rightarrow \mathord {\textnormal {\textsf {D}}}_{T_{2}}({}\vdash \mathord {\textnormal {\textsf {Type}}}(i))CT2:U(i)→DT2(⊢Type(i)) by CT2(A)≡∐_:A1\mathord {\textnormal {\textsf {C}}}_{T_{2}}(A)\equiv \coprod _{\_:A}\mathord {\textnormal {\textsf {1}}}CT2(A)≡∐_:A1