Let \(U\) be a universe,
let \(V\) be a universe
greater than or equal to \(U\),
and let \(W\) be a universe
strictly greater than \(V\).
We define presheaves
\(\mathbb {A}^{(V)},\mathbb {A}_{\bullet }^{(V)}:{(\mathord {\textnormal {\textsf {Topos}}}^{(1)}(U))}^{\mathord {\textnormal {\textsf {op}}}}\rightarrow W\)
by
\(\mathbb {A}^{(V)}(X)=\mathord {\textnormal {\textsf {Obj}}}(\mathop {\Uparrow ^{V}}(\mathord {\textnormal {\textsf {Sh}}}(X)))\)
and
\(\mathbb {A}_{\bullet }^{(V)}(X)=\mathord {\textnormal {\textsf {Obj}}}(\mathop {\Uparrow ^{V}}(\mathord {\textnormal {\textsf {Sh}}}(X))\backslash \mathord {\textnormal {\textsf {1}}})\).
We also define a morphism
\(\mathord {\textnormal {\textsf {p}}}^{(V)}:\mathbb {A}_{\bullet }^{(V)}\rightarrow \mathbb {A}^{(V)}\)
by the codomain projection.