Synthetic topos theory
[003K] Definition

Let TT be a type theory. We work in TT. Let i:Leveli:\mathord {\textnormal {\textsf {Level}}} and let XX be a topos. We define the global section functor

ΓX:S(X,i)U(i)\Gamma _{X}:\mathcal {S}(X,i)\rightarrow \mathcal {U}(i)
by the following composite.
S(X,i)\mathcal {S}(X,i)\simeq  {[003G]}DSh(X)(U(i))\mathord {\textnormal {\textsf {D}}}_{\mathord {\textnormal {\textsf {Sh}}}(X)}({}\vdash \mathcal {U}(i))\rightarrow  {GSSh(X)\mathord {\textnormal {\textsf {GS}}}_{\mathord {\textnormal {\textsf {Sh}}}(X)}}U(i)\mathcal {U}(i)
By [002R], ΓX\Gamma _{X} has a left adjoint which we call the constant sheaf functor and is denoted by ΔX\Delta _{X}.