Synthetic topos theory
[000T] Lemma

Let UU be a universe. Then étale morphisms in Topos(U)\mathord {\textnormal {\textsf {Topos}}}(U) has the left cancellation property. That is, for morphisms f:YXf:Y\rightarrow X and g:ZYg:Z\rightarrow Y in Topos(U)\mathord {\textnormal {\textsf {Topos}}}(U), if ff and fgf\circ g are étale, then so is gg.

Proof

Let XX be a UU-topos, let a,b:Sh(X)a,b:\mathord {\textnormal {\textsf {Sh}}}(X) be objects, and let F:Sh(X)/aSh(X)/bF:\mathord {\textnormal {\textsf {Sh}}}(X)/a\rightarrow \mathord {\textnormal {\textsf {Sh}}}(X)/b be a morphism in Logos(U)\Sh(X)\mathord {\textnormal {\textsf {Logos}}}(U)\backslash \mathord {\textnormal {\textsf {Sh}}}(X). By [000I], FF is equivalent to the pullback functor u{u}^{*} for some morphism u:bau:b\rightarrow a. Let s:Sh(X)/as:\mathord {\textnormal {\textsf {Sh}}}(X)/a be the object represented by uu. We have the equivalence Sh(X)/b(Sh(X)/a)/s\mathord {\textnormal {\textsf {Sh}}}(X)/b\simeq (\mathord {\textnormal {\textsf {Sh}}}(X)/a)/s. Then [000P] applies.