Synthetic topos theory
[001H] Proposition

Let \(U\) be a universe and let \(V\) be a universe greater than or equal to \(U\). Then the functor \(C\mapsto \mathop {\Uparrow ^{V}}C:\mathord {\textnormal {\textsf {Logos}}}(U)\rightarrow \mathord {\textnormal {\textsf {Logos}}}(V)\) takes étale limits in \(\mathord {\textnormal {\textsf {Logos}}}(U)\) to étale limits in \(\mathord {\textnormal {\textsf {Logos}}}(V)\).

Proof

Let \(C\) be a \(U\)-logos, let \(I\) be a \(U\)-small category, and let \(A:I\rightarrow C\) be a functor. Let \(B:C\) denote the colimit of \(A\). By [0011], the étale limit of the diagram induced by \(A\) is \(C/B\). Then apply [001G].