Let U be a universe.
- -(Q(s1),Q(s0)):Q(Δ[2])→Q(Δ[1])×Q(Δ[1])
determines a partial order
in Topos(U).
We refer to this partially ordered object
in Topos(U)
as I.
- -Q(d1):Q(Δ[0])→Q(Δ[1])
determines the least element of I.
- -Q(d0):Q(Δ[0])→Q(Δ[1])
determines the greatest element of I.
- -0≃Q(Δ[0])Q(d1)×Q(d0)Q(Δ[0])
- -Let n≥3 be an integer.
Then the morphism
(Q(sn−1),(Q(s0))n−2):Q(Δ[n])→Q(Δ[n−1])(Q(s0))n−2×Q(s1)Q(Δ[2])
is an equivalence.
(This means that Q(Δ[n])
is the object of
increasing sequences in I
of length n).